Computational complex optical field imaging using a designed metasurface diffuser

被引:54
作者
Kwon, Hyounghan
Arbabi, Ehsan
Kamali, Seyedeh Mahsa
Faraji-Dana, MohammadSadegh
Faraon, Andrei [1 ]
机构
[1] CALTECH, TJ Watson Lab Appl Phys, 1200 E Calif Blvd, Pasadena, CA 91125 USA
关键词
BAND ACHROMATIC METALENS; DIELECTRIC METASURFACES; VISIBLE WAVELENGTHS; SCATTERING LAYERS; HIGH-TRANSMISSION; PHASE RECOVERY; RESOLUTION; MEDIA; LIGHT; SPECTROMETER;
D O I
10.1364/OPTICA.5.000924
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Various speckle-based computational imaging techniques that exploit the ability of scattering media to transfer hidden information into the speckle pattern have recently been demonstrated. Current implementations suffer from several drawbacks associated with the use of conventional scattering media (CSM), such as their time-consuming characterization, instability with time, and limited memory-effect range. Here we show that by using a random dielectric metasurface diffuser (MD) with known scattering properties, many of these issues can be addressed. We experimentally demonstrate an imaging system with the ability to retrieve complex field values using a MD and the specklecorrelation scattering matrix method. We explore the mathematical properties of the MD transmission matrix such as its correlation and singular value spectrum to expand the understanding about both MDs and the speckle-correlation scattering matrix approach. In addition to a large noise tolerance, reliable reproducibility, and robustness against misalignments, using the MD allows us to substitute the laborious experimental characterization procedure of the CSM with a simple simulation process. Moreover, dielectric MDs with identical scattering properties can easily be mass-produced, thus enabling real-world applications. Representing a bridge between metasurface optics and speckle-based computational imaging, this work paves the way to extending the potentials of diverse speckle-based computational imaging methods for various applications such as biomedical imaging, holography, and optical encryption. (c) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:924 / 931
页数:8
相关论文
共 72 条
[1]   Single-frame 3D fluorescence microscopy with ultraminiature lensless FlatScope [J].
Adams, Jesse K. ;
Boominathan, Vivek ;
Avants, Benjamin W. ;
Vercosa, Daniel G. ;
Ye, Fan ;
Baraniuk, Richard G. ;
Robinson, Jacob T. ;
Veeraraghavan, Ashok .
SCIENCE ADVANCES, 2017, 3 (12)
[2]   Multiwavelength achromatic metasurfaces by dispersive phase compensation [J].
Aieta, Francesco ;
Kats, Mikhail A. ;
Genevet, Patrice ;
Capasso, Federico .
SCIENCE, 2015, 347 (6228) :1342-1345
[3]   DiffuserCam: lensless single-exposure 3D imaging [J].
Antipa, Nick ;
Kuo, Grace ;
Heckel, Reinhard ;
Mildenhall, Ben ;
Bostan, Emrah ;
Ng, Ren ;
Waller, Laura .
OPTICA, 2018, 5 (01) :1-9
[4]  
Arbabi A, 2017, NAT PHOTONICS, V11, P415, DOI [10.1038/NPHOTON.2017.96, 10.1038/nphoton.2017.96]
[5]   Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations [J].
Arbabi, Amir ;
Arbabi, Ehsan ;
Kamali, Seyedeh Mahsa ;
Horie, Yu ;
Han, Seunghoon ;
Faraon, Andrei .
NATURE COMMUNICATIONS, 2016, 7
[6]  
Arbabi A, 2015, NAT NANOTECHNOL, V10, P937, DOI [10.1038/nnano.2015.186, 10.1038/NNANO.2015.186]
[7]   Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays [J].
Arbabi, Amir ;
Horie, Yu ;
Ball, Alexander J. ;
Bagheri, Mahmood ;
Faraon, Andrei .
NATURE COMMUNICATIONS, 2015, 6
[8]   Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces [J].
Arbabi, Ehsan ;
Arbabi, Amir ;
Kamali, Seyedeh Mahsa ;
Horie, Yu ;
Faraon, Andrei .
OPTICA, 2017, 4 (06) :625-632
[9]   FlatCam: Replacing Lenses with Masks and Computation [J].
Asif, M. Salman ;
Ayremlou, Ali ;
Veeraraghavan, Ashok ;
Baraniuk, Richard ;
Sankaranarayanan, Aswin .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, :663-666
[10]  
Baek Y., 2018, ARXIV180210321