Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning

被引:155
|
作者
Zhou, Chunyang [1 ]
Xu, Lin [1 ]
Song, Jian [1 ]
Xing, Ruiqing [1 ]
Xu, Sai [1 ]
Liu, Dali [1 ]
Song, Hongwei [1 ]
机构
[1] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China
来源
SCIENTIFIC REPORTS | 2014年 / 4卷
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
IN-SITU; NANOPARTICLES; FABRICATION; NANOSTRUCTURES; SUBSTRATE; ELECTRODE; OXIDE; DYE; PERFORMANCE; MORPHOLOGY;
D O I
10.1038/srep07382
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Three-dimensional (3D) porous ZnO-CuO hierarchical nanocomposites (HNCs) nonenzymatic glucose electrodes with different thicknesses were fabricated by coelectrospinning and compared with 3D mixed ZnO/CuO nanowires (NWs) and pure CuO NWs electrodes. The structural characterization revealed that the ZnO-CuO HNCs were composed of the ZnO and CuO mixed NWs trunk (similar to 200 nm), whose outer surface was attached with small CuO nanoparticles (NPs). Moreover, a good synergetic effect between CuO and ZnO was confirmed. The nonenzymatic biosensing properties of as prepared 3D porous electrodes based on fluorine doped tin oxide (FTO) were studied and the results indicated that the sensing properties of 3D porous ZnO-CuO HNCs electrodes were significantly improved and depended strongly on the thickness of the HNCs. At an applied potential of + 0.7 V, the optimum ZnO-CuO HNCs electrode presented a high sensitivity of 3066.4 mu AmM(-1)cm(-2), the linear range up to 1.6 mu M, and low practical detection limit of 0.21 mu M. It also showed outstanding long term stability, good reproducibility, excellent selectivity and accurate measurement in real serum sample. The formation of special hierarchical heterojunction and the well-constructed 3D structure were the main reasons for the enhanced nonenzymatic biosensing behavior.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Highly sensitive non-enzymatic glucose sensor based on copper oxide nanorods
    Jasim, Haneen Ali
    Dakhil, Osama Abdul Azeez
    JOURNAL OF NANOPARTICLE RESEARCH, 2022, 24 (11)
  • [42] CoP Nanocage-Based Efficient Non-enzymatic Glucose Electrochemical Sensor
    Lu Xue-Yi
    Liu Jun-Guo
    Zhu Yan-Yan
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2020, 36 (09) : 1675 - 1682
  • [43] Tunable hierarchical surfaces of CuO derived from metal-organic frameworks for non-enzymatic glucose sensing
    Luo, Yumei
    Wang, Qingyong
    Li, Jinghua
    Xu, Fen
    Sun, Lixian
    Bu, Yiting
    Zou, Yongjin
    Kraatz, Heinz-Bernhard
    Rosei, Federico
    INORGANIC CHEMISTRY FRONTIERS, 2020, 7 (07) : 1512 - 1525
  • [44] Electrochemical non-enzymatic glucose sensors based on CuO nanostructures
    Yang, Jiahao
    Yin, Jing
    Xu, Lan
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [45] Three-dimensional graphene foam integrated with Ni(OH)2 nanosheets as a hierarchical structure for non-enzymatic glucose sensing
    Mao, Weiwei
    He, Haiping
    Ye, Zhizhen
    Huang, Jingyun
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2019, 832 : 275 - 283
  • [46] A High-Performance Three-Dimensional Hierarchical Structure MOF-Derived NiCo LDH Nanosheets for Non-Enzymatic Glucose Detection
    Song, Dandan
    Wang, Lili
    Qu, Yuning
    Wang, Bing
    Li, Yanting
    Miao, Xueli
    Yang, Yuying
    Duan, Cunpeng
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (16) : B1681 - B1688
  • [47] Three-dimensional hierarchical CuO gas sensor modified by Au nanoparticles
    Lei, Qi
    Li, Hairong
    Zhang, Huan
    Wang, Jianan
    Fan, Wenhao
    Cai, Lina
    JOURNAL OF SEMICONDUCTORS, 2019, 40 (02)
  • [48] A highly sensitive non-enzymatic glucose electrochemical sensor based on NiO nanohives
    Thi Oanh Vu
    Thi Xuan Chu
    Duc Hoa Nguyen
    ADVANCES IN NATURAL SCIENCES-NANOSCIENCE AND NANOTECHNOLOGY, 2021, 12 (04)
  • [49] A non-enzymatic glucose sensor based on Ni/PANI coaxial nanowire arrays
    Wang, Hongzhi
    Qiu, Jianrui
    Sun, Shaofeng
    Zhang, Weiguo
    Yao, Suwei
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2021, 32 (06) : 7751 - 7764
  • [50] Non-enzymatic electrochemical glucose sensor based on NiMoO4 nanorods
    Wang, Dandan
    Cai, Daoping
    Huang, Hui
    Liu, Bin
    Wang, Lingling
    Liu, Yuan
    Li, Han
    Wang, Yanrong
    Li, Qiuhong
    Wang, Taihong
    NANOTECHNOLOGY, 2015, 26 (14)