Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning

被引:156
|
作者
Zhou, Chunyang [1 ]
Xu, Lin [1 ]
Song, Jian [1 ]
Xing, Ruiqing [1 ]
Xu, Sai [1 ]
Liu, Dali [1 ]
Song, Hongwei [1 ]
机构
[1] Jilin Univ, Coll Elect Sci & Engn, State Key Lab Integrated Optoelect, Changchun 130012, Peoples R China
来源
SCIENTIFIC REPORTS | 2014年 / 4卷
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
IN-SITU; NANOPARTICLES; FABRICATION; NANOSTRUCTURES; SUBSTRATE; ELECTRODE; OXIDE; DYE; PERFORMANCE; MORPHOLOGY;
D O I
10.1038/srep07382
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Three-dimensional (3D) porous ZnO-CuO hierarchical nanocomposites (HNCs) nonenzymatic glucose electrodes with different thicknesses were fabricated by coelectrospinning and compared with 3D mixed ZnO/CuO nanowires (NWs) and pure CuO NWs electrodes. The structural characterization revealed that the ZnO-CuO HNCs were composed of the ZnO and CuO mixed NWs trunk (similar to 200 nm), whose outer surface was attached with small CuO nanoparticles (NPs). Moreover, a good synergetic effect between CuO and ZnO was confirmed. The nonenzymatic biosensing properties of as prepared 3D porous electrodes based on fluorine doped tin oxide (FTO) were studied and the results indicated that the sensing properties of 3D porous ZnO-CuO HNCs electrodes were significantly improved and depended strongly on the thickness of the HNCs. At an applied potential of + 0.7 V, the optimum ZnO-CuO HNCs electrode presented a high sensitivity of 3066.4 mu AmM(-1)cm(-2), the linear range up to 1.6 mu M, and low practical detection limit of 0.21 mu M. It also showed outstanding long term stability, good reproducibility, excellent selectivity and accurate measurement in real serum sample. The formation of special hierarchical heterojunction and the well-constructed 3D structure were the main reasons for the enhanced nonenzymatic biosensing behavior.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning
    Chunyang Zhou
    Lin Xu
    Jian Song
    Ruiqing Xing
    Sai Xu
    Dali Liu
    Hongwei Song
    Scientific Reports, 4
  • [2] Easy Fabrication of a Sensitive Non-Enzymatic Glucose Sensor Based on Electrospinning CuO-ZnO Nanocomposites
    Wu, Jingping
    Yin, Fan
    INTEGRATED FERROELECTRICS, 2013, 147 (01) : 47 - 58
  • [3] Facile preparation of three-dimensional hierarchical MgO microstructures for non-enzymatic glucose sensor
    Hilal, Muhammad
    Han, Jeong In
    APPLIED SURFACE SCIENCE, 2023, 619
  • [4] Synthesis of ZnO-CuO porous core-shell spheres and their application for non-enzymatic glucose sensor
    Cai, Bin
    Zhou, Yu
    Zhao, Minggang
    Cai, Hui
    Ye, Zhizhen
    Wang, Lei
    Huang, Jingyun
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2015, 118 (03): : 989 - 996
  • [5] A Novel Non-Enzymatic Glucose Sensor Based on CuO-Graphene Nanocomposites
    Yu, Hong-Ying
    Xu, Miao-Qing
    Yu, Shu-Hong
    Zhao, Guang-Chao
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2013, 8 (06): : 8050 - 8057
  • [6] A sensitive AgNPs/CuO nanofibers non-enzymatic glucose sensor based on electrospinning technology
    Zheng, Baozhan
    Liu, Guangyue
    Yao, Aiwen
    Xiao, Yanling
    Du, Juan
    Guo, Yong
    Xiao, Dan
    Hu, Qin
    Choi, Martin M. F.
    SENSORS AND ACTUATORS B-CHEMICAL, 2014, 195 : 431 - 438
  • [7] Non-enzymatic glucose sensor based on three-dimensional hierarchical Co3O4 nanobooks
    Wang, Mei
    Shi, Mingyu
    Meng, Erchao
    Gong, Feilong
    Li, Feng
    MICRO & NANO LETTERS, 2020, 15 (03) : 191 - 195
  • [8] Novel Cu/CuO/ZnO hybrid hierarchical nanostructures for non-enzymatic glucose sensor application
    SoYoon, Shin
    Ramadoss, Ananthakumar
    Saravanakumar, Balasubramaniam
    Kim, Sang Jae
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2014, 717 : 90 - 95
  • [9] Three-Dimensional Copper Foam Supported CuO Nanowire Arrays: An Efficient Non-enzymatic Glucose Sensor
    Liu, Xiangjian
    Yang, Wenxiu
    Chen, Lulu
    Jia, Jianbo
    ELECTROCHIMICA ACTA, 2017, 235 : 519 - 526
  • [10] Novel ultrasensitive non-enzymatic glucose sensors based on controlled flower-like CuO hierarchical films
    Li, Kun
    Fan, Guoli
    Yang, Lan
    Li, Feng
    SENSORS AND ACTUATORS B-CHEMICAL, 2014, 199 : 175 - 182