Quasi-interpolation by quadratic piecewise polynomials in three variables

被引:22
作者
Nürnberger, G
Rössl, C
Seidel, HP
Zeilfelder, F [1 ]
机构
[1] Univ Mannheim, Inst Math, D-68131 Mannheim, Germany
[2] Max Planck Inst Informat, D-66123 Saarbrucken, Germany
关键词
piecewise quadratic polynomials; trivariate splines; type-6 tetrahedral partitions; Bernstein-Bezier techniques; (nearly) optimal approximation order; quasi-interpolation; computer aided geometric design; visualization; gridded volume data;
D O I
10.1016/j.cagd.2004.11.002
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A quasi-interpolation method for quadratic piecewise polynomials in three variables is described which can be used for the efficient reconstruction and visualization of gridded volume data. The Bernstein-Bezier coefficients of the splines are immediately available from the given data values by applying a local averaging, where no prescribed derivatives are required. Since the approach does not make use of a particular basis or a subset spanning the spline spaces, we analyze the smoothness properties of the trivariate splines. We prove that the splines yield nearly optimal approximation order while simultaneously its piecewise derivatives provide optimal approximation of the derivatives for smooth functions. The constants of the corresponding error bounds are given explicitly. Numerical tests confirm the results and the efficiency of the method. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:221 / 249
页数:29
相关论文
共 52 条
[1]   AN EXPLICIT BASIS FOR C1 QUARTIC BIVARIATE SPLINES [J].
ALFELD, P ;
PIPER, B ;
SCHUMAKER, LL .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :891-911
[2]   THE GENERIC DIMENSION OF THE SPACE OF C1 SPLINES OF DEGREE D-GREATER-THAN-OR-EQUAL-TO-8 ON TETRAHEDRAL DECOMPOSITIONS [J].
ALFELD, P ;
SCHUMAKER, LL ;
WHITELEY, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (03) :889-920
[3]   ON DIMENSION AND EXISTENCE OF LOCAL BASES FOR MULTIVARIATE SPLINE SPACES [J].
ALFELD, P ;
SCHUMAKER, LL ;
SIRVENT, M .
JOURNAL OF APPROXIMATION THEORY, 1992, 70 (02) :243-264
[4]  
Alfeld P., 1984, Computer-Aided Geometric Design, V1, P169, DOI 10.1016/0167-8396(84)90029-3
[5]  
[Anonymous], S VOL VIS GRAPH
[6]  
BAJAJ C., 1999, DATA VISUALIZATION T
[7]   Triquadratic reconstruction for interactive modelling of potential fields [J].
Barthe, L ;
Mora, B ;
Dodgson, N ;
Sabin, M .
SHAPE MODELING AND APPLICATIONS, PROCEEDINGS, 2002, :145-+
[8]   MONOTONICITY PRESERVING SURFACE INTERPOLATION [J].
BEATSON, RK ;
ZIEGLER, Z .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1985, 22 (02) :401-411
[9]   SURVEY OF CURVE AND SURFACE METHODS IN CAGD. [J].
Boehm, Wolfgang ;
Farin, Gerald ;
Kahmann, Juergen .
Computer Aided Geometric Design, 1984, 1 (01) :1-60
[10]  
Chen M, 2000, VOLUME GRAPHICS, P97