A hybrid intelligent classifier for anomaly detection

被引:4
|
作者
Jove, Esteban [1 ]
Casado-Vara, Roberto [2 ]
Casteleiro-Roca, Jose-Luis [1 ]
Mendez Perez, Juan Albino [3 ]
Vale, Zita [4 ]
Luis Calvo-Rolle, Jose [1 ]
机构
[1] Univ A Coruna, Dept Ind Engn, Avda 19 Febrero S-N, Ferrol 15405, A Coruna, Spain
[2] IoT Digital Innovat Hub, BISITE Res Grp, Edificio Multiusos I D I, Salamanca 37007, Spain
[3] Univ La Laguna, Dept Comp Sci & Syst Engn, Avda Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38200, Spain
[4] Polytech Porto ISEP IPP, Inst Engn, Res Grp Intelligent Engn & Comp Adv Innovat & Dev, Rua Dr Antonio Bernardino de Almeida 431, P-4200072 Porto, Portugal
关键词
One-class; Outlier detection; SVDD; Autoencoder; PCA; APE; SYSTEM; CURVE;
D O I
10.1016/j.neucom.2019.12.138
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The present research is focused on the use of intelligent techniques to perform anomaly detection. This task represents a special concern in complex systems that operate in different regimes. Then, this work proposes a hybrid intelligent classifier based on one-class techniques, capable of detecting anomalies of the different operating ranges. The proposal is implemented over an industrial plant designed to control the water level in a tank, taking into consideration three different operating points. The hybrid classifier is validated by using real anomalies, obtaining successful results. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:498 / 507
页数:10
相关论文
共 50 条
  • [31] An efficient system for anomaly detection using deep learning classifier
    Revathi, A. R.
    Kumar, Dhananjay
    SIGNAL IMAGE AND VIDEO PROCESSING, 2017, 11 (02) : 291 - 299
  • [32] A Hybrid Approach of HTTP Anomaly Detection
    Shi, Yang
    Wang, Shupei
    Zhao, Qinpei
    Li, Jiangfeng
    WEB AND BIG DATA, 2017, 10612 : 128 - 137
  • [33] A hybrid classifier for precise and robust eye detection
    Jin, Lizuo
    Yuan, Xiaohui
    Satoh, Shin'ichi
    Li, Jiuxian
    Xia, Liangzheng
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, PROCEEDINGS, 2006, : 731 - +
  • [34] A Hybrid Classifier Approach for Network Intrusion Detection
    Arivardhini, S.
    Alamelu, L. Muthu
    Deepika, S.
    2020 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATION SYSTEMS (ICACCS), 2020, : 824 - 827
  • [35] Intelligent Big Data Summarization for Rare Anomaly Detection
    Ahmed, Mohiuddin
    IEEE ACCESS, 2019, 7 : 68669 - 68677
  • [36] Proactive anomaly detection using distributed intelligent agents
    Thottan, M
    Ji, CY
    IEEE NETWORK, 1998, 12 (05): : 21 - 27
  • [37] Intelligent Human Anomaly Detection using LSTM Autoencoders
    Roseline, S. Abijah
    Karthik, Saraf
    Sruti, Immadi Naga Venkata Divya
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [38] Detection of Anomaly in Train Speed for Intelligent Railway Systems
    Kang, Seungmin
    Sristi, Sravana
    Karachiwala, Jabir
    Hu, Yih-Chun
    2018 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND DIAGNOSIS (ICCAD), 2018,
  • [39] Driving Behavior Assessment and Anomaly Detection for Intelligent Vehicles
    Yang, Chule
    Renzaglia, Alessandro
    Paigwar, Anshul
    Laugier, Christian
    Wang, Danwei
    PROCEEDINGS OF THE IEEE 2019 9TH INTERNATIONAL CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS (CIS) ROBOTICS, AUTOMATION AND MECHATRONICS (RAM) (CIS & RAM 2019), 2019, : 524 - 529
  • [40] Energy Management Systems with Intelligent Anomaly Detection and Prediction
    Nakayama, Kiyoshi
    Sharma, Ratnesh
    2017 RESILIENCE WEEK (RWS), 2017, : 24 - 29