A hybrid intelligent classifier for anomaly detection

被引:4
|
作者
Jove, Esteban [1 ]
Casado-Vara, Roberto [2 ]
Casteleiro-Roca, Jose-Luis [1 ]
Mendez Perez, Juan Albino [3 ]
Vale, Zita [4 ]
Luis Calvo-Rolle, Jose [1 ]
机构
[1] Univ A Coruna, Dept Ind Engn, Avda 19 Febrero S-N, Ferrol 15405, A Coruna, Spain
[2] IoT Digital Innovat Hub, BISITE Res Grp, Edificio Multiusos I D I, Salamanca 37007, Spain
[3] Univ La Laguna, Dept Comp Sci & Syst Engn, Avda Astrofis Francisco Sanchez S-N, San Cristobal la Laguna 38200, Spain
[4] Polytech Porto ISEP IPP, Inst Engn, Res Grp Intelligent Engn & Comp Adv Innovat & Dev, Rua Dr Antonio Bernardino de Almeida 431, P-4200072 Porto, Portugal
关键词
One-class; Outlier detection; SVDD; Autoencoder; PCA; APE; SYSTEM; CURVE;
D O I
10.1016/j.neucom.2019.12.138
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The present research is focused on the use of intelligent techniques to perform anomaly detection. This task represents a special concern in complex systems that operate in different regimes. Then, this work proposes a hybrid intelligent classifier based on one-class techniques, capable of detecting anomalies of the different operating ranges. The proposal is implemented over an industrial plant designed to control the water level in a tank, taking into consideration three different operating points. The hybrid classifier is validated by using real anomalies, obtaining successful results. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:498 / 507
页数:10
相关论文
共 50 条
  • [21] Network Anomaly Detection Using LightGBM: A Gradient Boosting Classifier
    Islam, Md Khairul
    Hridi, Prithula
    Hossain, Md Shohrab
    Narman, Husnu S.
    2020 30TH INTERNATIONAL TELECOMMUNICATION NETWORKS AND APPLICATIONS CONFERENCE (ITNAC), 2020, : 221 - 227
  • [22] Robust Activity Recognition Combining Anomaly Detection and Classifier Retraining
    Sagha, Hesam
    Calatroni, Alberto
    Millan, Jose del R.
    Roggen, Daniel
    Troester, Gerhard
    Chavarriaga, Ricardo
    2013 IEEE INTERNATIONAL CONFERENCE ON BODY SENSOR NETWORKS (BSN), 2013,
  • [23] Detection of Magnetic Anomaly Based on a Classifier for Smartphone Attitude Estimation
    Park, So Young
    Heo, Se Jong
    Park, Chan Gook
    PROCEEDINGS OF THE 29TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2016), 2016, : 1184 - 1189
  • [24] Anomaly detection method based on fast local subspace classifier
    Shibuya, Hisae
    Maeda, Shunji
    IEEJ Transactions on Electronics, Information and Systems, 2014, 134 (05) : 643 - 650
  • [25] Network traffic anomaly detection algorithm using mahout classifier
    Peng, Hua
    Liu, Liang
    Liu, Jiayong
    Lewis, Johnwb R.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (01) : 137 - 144
  • [26] Anomaly Detection Method Based on Fast Local Subspace Classifier
    Shibuya, Hisae
    Maeda, Shunji
    ELECTRONICS AND COMMUNICATIONS IN JAPAN, 2016, 99 (01) : 32 - 41
  • [27] Anomaly Based Intrusion Detection Using Meta Ensemble Classifier
    Boro, Debojit
    Nongpoh, Bernard
    Bhattacharyya, Dhruba K.
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON SECURITY OF INFORMATION AND NETWORKS, 2012, : 143 - 147
  • [28] Trust-based classifier combination for network anomaly detection
    Rehak, Martin
    Pechoucek, Michal
    Grill, Martin
    Bartos, Karel
    COOPERATIVE INFORMATION AGENTS XII, PROCEEDINGS, 2008, 5180 : 116 - +
  • [29] Anomaly Detection System Based on Classifier Fusion in ICS Environment
    Vavra, Jan
    Hromada, Martin
    2017 INTERNATIONAL CONFERENCE ON SOFT COMPUTING, INTELLIGENT SYSTEM AND INFORMATION TECHNOLOGY (ICSIIT), 2017, : 32 - 38
  • [30] An efficient system for anomaly detection using deep learning classifier
    A. R. Revathi
    Dhananjay Kumar
    Signal, Image and Video Processing, 2017, 11 : 291 - 299