Effects of lomefloxacin and norfloxacin on pancreatic β-cell ATP-sensitive K+ channels

被引:29
|
作者
Zünkler, BJ [1 ]
Wos, M [1 ]
机构
[1] Fed Inst Drugs & Med Devices, D-53175 Bonn, Germany
关键词
pancreatic beta-cell; K-ATP channels; fluoroquinolones;
D O I
10.1016/S0024-3205(03)00296-0
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
In patients administered lomefloxacin alterations in blood glucose concentrations have been observed in some cases and lomefloxacin has previously been shown to augment insulin release from rat pancreatic islets at micromolar concentrations. The aim of the present study was to compare the effects of two structurally related fluoroquinolones, lomefloxacin and norfloxacin, on ATP-sensitive K+ (K-ATP) currents from the clonal insulinoma cell line RINm5F using the whole-cell configuration of the patch-clamp technique. The application of lomefloxacin concentration-dependently blocked K-ATP currents from RINm5F cells with a half-maximally inhibitory concentration of 81 muM, whereas the application of norfloxacin (at concentrations up to 300 muM) had only minor effects on K-ATP currents. Block of pancreatic beta-cell K-ATP currents could be mediated by interaction of lomefloxacin either with the regulatory subunit (SUR1) or with the pore-forming subunit (Kir6.2). We favour the latter hypothesis, since some fluoroquinolones have recently been shown to block the pore-forming subunit of the cardiac rapid delayed rectifier K+ current I-Kr (which is encoded by HERG (human ether-a-go-go-related gene)). Thus, as demonstrated for cardiac HERG channels in previous studies and for pancreatic beta-cell K-ATP channels in the present study, fluoroquinolones differ markedly in their potencies to inhibit K+ channel activity. (C) 2003 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:429 / 435
页数:7
相关论文
共 50 条
  • [31] Correlating structure and function in ATP-sensitive K+ channels
    Ashcroft, FM
    Gribble, FM
    TRENDS IN NEUROSCIENCES, 1998, 21 (07) : 288 - 294
  • [32] Physiological and pathophysiological roles of ATP-sensitive K+ channels
    Seino, S
    Miki, T
    PROGRESS IN BIOPHYSICS & MOLECULAR BIOLOGY, 2003, 81 (02): : 133 - 176
  • [33] ATP-sensitive K+ channels in rat colonic epithelium
    Ervice Pouokam
    Sandra Bader
    Brigitta Brück
    Bärbel Schmidt
    Martin Diener
    Pflügers Archiv - European Journal of Physiology, 2013, 465 : 865 - 877
  • [34] GATING PROPERTIES OF ATP-SENSITIVE K+ CHANNELS IN THE HEART
    NOMA, A
    CARDIOVASCULAR DRUGS AND THERAPY, 1993, 7 : 515 - 520
  • [35] Role of ATP-Sensitive K+ Channels in Cardiac Arrhythmias
    Nakaya, Haruaki
    JOURNAL OF CARDIOVASCULAR PHARMACOLOGY AND THERAPEUTICS, 2014, 19 (03) : 237 - 243
  • [36] Mitochondrial ATP-sensitive K+ channels, protectors of the heart
    Yamada, Mitsuhiko
    JOURNAL OF PHYSIOLOGY-LONDON, 2010, 588 (02): : 283 - 286
  • [37] Role of the mitochondrial ATP-sensitive K+ channels in cardioprotection
    Ardehali, H
    ACTA BIOCHIMICA POLONICA, 2004, 51 (02) : 379 - 390
  • [38] Amiodarone inhibits cardiac ATP-Sensitive K+ channels
    Holmes, DS
    Sun, ZQ
    Porter, L
    Artman, M
    Chinitz, L
    Coetzee, WA
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2000, 35 (02) : 97A - 97A
  • [39] ATP-sensitive K+ channels (mitoKATP) in renal mitochondria
    Cancherini, DV
    Trabuco, LG
    Rebouças, NA
    Kowaltowski, AJ
    BIOPHYSICAL JOURNAL, 2003, 84 (02) : 203A - 203A
  • [40] ATP-sensitive K+ channels in rat colonic epithelium
    Pouokam, Ervice
    Bader, Sandra
    Brueck, Brigitta
    Schmidt, Baerbel
    Diener, Martin
    PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2013, 465 (06): : 865 - 877