Lagrangian for Circuits with Higher-Order Elements

被引:7
|
作者
Biolek, Zdenek [1 ,2 ]
Biolek, Dalibor [1 ,2 ]
Biolkova, Viera [3 ]
机构
[1] Brno Univ Technol, Dept Microelect, Brno 61600, Czech Republic
[2] Univ Def, Dept Elect Engn, Brno 66210, Czech Republic
[3] Brno Univ Technol, Dept Radio Elect, Brno 61600, Czech Republic
关键词
Hamilton's variational principle; higher-order element; memristor; Lagrangian; Chua's table; Euler-Lagrange equation; NETWORKS; EQUATIONS; TABLE;
D O I
10.3390/e21111059
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The necessary and sufficient conditions of the validity of Hamilton's variational principle for circuits consisting of (alpha,beta) elements from Chua's periodical table are derived. It is shown that the principle holds if and only if all the circuit elements lie on the so-called Sigma-diagonal with a constant sum of the indices alpha and beta. In this case, the Lagrangian is the sum of the state functions of the elements of the L or R+ types minus the sum of the state functions of the elements of the C or R- types. The equations of motion generated by this Lagrangian are always of even-order. If all the elements are linear, the equations of motion contain only even-order derivatives of the independent variable. Conclusions are illustrated on an example of the synthesis of the Pais-Uhlenbeck oscillator via the elements from Chua's table.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] The HyperKron Graph Model for higher-order features
    Eikmeier, Nicole
    Gleich, David F.
    Ramani, Arjun S.
    2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 941 - 946
  • [42] Higher-Order Interactions Characterized in Cortical Activity
    Yu, Shan
    Yang, Hongdian
    Nakahara, Hiroyuki
    Santos, Gustavo S.
    Nikolic, Danko
    Plenz, Dietmar
    JOURNAL OF NEUROSCIENCE, 2011, 31 (48) : 17514 - 17526
  • [43] The physics of higher-order interactions in complex systems
    Battiston, Federico
    Amico, Enrico
    Barrat, Alain
    Bianconi, Ginestra
    Ferraz de Arruda, Guilherme
    Franceschiello, Benedetta
    Iacopini, Iacopo
    Kefi, Sonia
    Latora, Vito
    Moreno, Yamir
    Murray, Micah M.
    Peixoto, Tiago P.
    Vaccarino, Francesco
    Petri, Giovanni
    NATURE PHYSICS, 2021, 17 (10) : 1093 - 1098
  • [44] Higher-order fractional Green and Gauss formulas
    Cheng, Jinfa
    Dai, Weizhong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 157 - 171
  • [45] Invariant Higher-Order Variational Problems II
    Gay-Balmaz, Francois
    Holm, Darryl D.
    Meier, David M.
    Ratiu, Tudor S.
    Vialard, Francois-Xavier
    JOURNAL OF NONLINEAR SCIENCE, 2012, 22 (04) : 553 - 597
  • [46] Higher-order triadic percolation on random hypergraphs
    Sun, Hanlin
    Bianconi, Ginestra
    PHYSICAL REVIEW E, 2024, 110 (06)
  • [47] Higher-order neurodynamical equation for simplex prediction
    Wang, Zhihui
    Chen, Jianrui
    Gong, Maoguo
    Shao, Zhongshi
    NEURAL NETWORKS, 2024, 173
  • [48] Higher-order interactions promote chimera states
    Kundu, Srilena
    Ghosh, Dibakar
    PHYSICAL REVIEW E, 2022, 105 (04)
  • [49] Boundary controllability of a higher-order Boussinesq system
    Micu, Sorin
    Pazoto, Ademir F.
    Vieira, Miguel D. Soto
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024,
  • [50] Dimension reduction in higher-order contagious phenomena
    Ghosh, Subrata
    Khanra, Pitambar
    Kundu, Prosenjit
    Ji, Peng
    Ghosh, Dibakar
    Hens, Chittaranjan
    CHAOS, 2023, 33 (05)