Lagrangian for Circuits with Higher-Order Elements

被引:7
|
作者
Biolek, Zdenek [1 ,2 ]
Biolek, Dalibor [1 ,2 ]
Biolkova, Viera [3 ]
机构
[1] Brno Univ Technol, Dept Microelect, Brno 61600, Czech Republic
[2] Univ Def, Dept Elect Engn, Brno 66210, Czech Republic
[3] Brno Univ Technol, Dept Radio Elect, Brno 61600, Czech Republic
关键词
Hamilton's variational principle; higher-order element; memristor; Lagrangian; Chua's table; Euler-Lagrange equation; NETWORKS; EQUATIONS; TABLE;
D O I
10.3390/e21111059
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The necessary and sufficient conditions of the validity of Hamilton's variational principle for circuits consisting of (alpha,beta) elements from Chua's periodical table are derived. It is shown that the principle holds if and only if all the circuit elements lie on the so-called Sigma-diagonal with a constant sum of the indices alpha and beta. In this case, the Lagrangian is the sum of the state functions of the elements of the L or R+ types minus the sum of the state functions of the elements of the C or R- types. The equations of motion generated by this Lagrangian are always of even-order. If all the elements are linear, the equations of motion contain only even-order derivatives of the independent variable. Conclusions are illustrated on an example of the synthesis of the Pais-Uhlenbeck oscillator via the elements from Chua's table.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Higher-Order Hamiltonian for Circuits with (α,β) Elements
    Biolek, Zdenek
    Biolek, Dalibor
    Biolkova, Viera
    Kolka, Zdenek
    ENTROPY, 2020, 22 (04)
  • [2] Lagrangian and Hamiltonian formalisms for coupled higher-order elements: theory, modeling, simulation
    Biolek, Zdenek
    Biolek, Dalibor
    Biolkova, Viera
    Kolka, Zdenek
    NONLINEAR DYNAMICS, 2021, 104 (04) : 3547 - 3560
  • [3] Lagrangian and Hamiltonian formalisms for coupled higher-order elements: theory, modeling, simulation
    Zdeněk Biolek
    Dalibor Biolek
    Viera Biolková
    Zdeněk Kolka
    Nonlinear Dynamics, 2021, 104 : 3547 - 3560
  • [4] Taxicab geometry in table of higher-order elements
    Biolek, Zdenek
    Biolek, Dalibor
    Biolkova, Viera
    Kolka, Zdenek
    NONLINEAR DYNAMICS, 2019, 98 (01) : 623 - 636
  • [5] A Lagrangian description of the higher-order Painlev, equations
    Choudhury, A. Ghose
    Guha, Partha
    Kudryashov, N. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2012, 52 (05) : 746 - 755
  • [6] A Lagrangian description of the higher-order Painlevé equations
    A. Ghose Choudhury
    Partha Guha
    N. A. Kudryashov
    Computational Mathematics and Mathematical Physics, 2012, 52 : 746 - 755
  • [7] A Lagrangian description of the higher-order Painleve equations
    Choudhury, A. Ghose
    Guha, Partha
    Kudryashov, Nikolay A.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (11) : 6612 - 6619
  • [8] A higher-order Lagrangian discontinuous Galerkin hydrodynamic method for solid dynamics
    Lieberman, Evan J.
    Liu, Xiaodong
    Morgan, Nathaniel R.
    Luscher, Darby J.
    Burton, Donald E.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 353 : 467 - 490
  • [9] Rogue waves in higher-order systems: Lagrangian approach
    Bokaeeyan, Mahyar
    Ankiewicz, Adrian
    Akhmediev, Nail
    PHYSICA SCRIPTA, 2019, 94 (03)
  • [10] Duality of Complex Systems Built from Higher-Order Elements
    Biolek, Dalibor
    Biolek, Zdenek
    Biolkova, Viera
    COMPLEXITY, 2018,