Hydroxycholesterol substitution in ionizable lipid nanoparticles for mRNA delivery to T cells

被引:68
作者
Patel, Savan K. [1 ]
Billingsley, Margaret M. [1 ]
Frazee, Caitlin [1 ]
Han, Xuexiang [1 ]
Swingle, Kelsey L. [1 ]
Qin, Jingya [1 ]
Alameh, Mohamad-Gabriel [2 ]
Wang, Karin [3 ]
Weissman, Drew [2 ]
Mitchell, Michael J. [1 ,4 ,5 ,6 ,7 ,8 ]
机构
[1] Univ Penn, Dept Bioengn, Philadelphia, PA 19104 USA
[2] Univ Penn, Perelman Sch Med, Philadelphia, PA 19104 USA
[3] Temple Univ, Dept Bioengn, Philadelphia, PA 19122 USA
[4] Univ Penn, Abramson Canc Ctr, Perelman Sch Med, Philadelphia, PA 19104 USA
[5] Univ Penn, Inst Immunol, Perelman Sch Med, Philadelphia, PA 19104 USA
[6] Univ Penn, Cardiovasc Inst, Perelman Sch Med, Philadelphia, PA 19104 USA
[7] Univ Penn, Inst Regenerat Med, Perelman Sch Med, Philadelphia, PA 19104 USA
[8] Univ Penn, Dept Bioengn, 210 South 33 Rd St,240 Skirkanich Hall, Philadelphia, PA 19104 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
Lipid nanoparticles; mRNA delivery; Cholesterol; Endosomal trafficking; GENE-THERAPIES; SIRNA DELIVERY; IN-VITRO; CHOLESTEROL; VIVO; IMMUNOTHERAPY; FORMULATIONS; HOMEOSTASIS; OXYSTEROLS; STRATEGIES;
D O I
10.1016/j.jconrel.2022.05.020
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Delivery of nucleic acids, such as mRNA, to immune cells has become a major focus in the past decade with ionizable lipid nanoparticles (LNPs) emerging as a clinically-validated delivery platform. LNPs-typically composed of ionizable lipids, cholesterol, phospholipids, and polyethylene glycol lipids -have been designed and optimized for a variety of applications including cancer therapies, vaccines, and gene editing. However, LNPs have only recently been investigated for delivery to T cells, which has various therapeutic applications including the engineering of T cell immunotherapies. While several LNP formulations have been evaluated for mRNA delivery, recent work has demonstrated that the utilization of cholesterol analogs may enhance mRNA delivery. Other studies have shown that cholesterols modified with hydroxyl groups can alter endocytic recycling mechanisms. Here, we engineered a library of LNPs incorporating hydroxycholesterols to evaluate their impact on mRNA delivery to T cells by leveraging endosomal trafficking mechanisms. Substitution of 25% and 50% 7 alpha hydroxycholesterol for cholesterol in LNPs enhanced mRNA delivery to primary human T cells ex vivo by 1.8-fold and 2.0-fold, respectively. Investigation of endosomal trafficking revealed that these modifications also increase late endosome production and reduce the presence of recycling endosomes. These results suggest that hydroxyl modification of cholesterol molecules incorporated into LNP formulations provides a mechanism for improving delivery of nucleic acid cargo to T cells for a range of immunotherapy applications.
引用
收藏
页码:521 / 532
页数:12
相关论文
共 50 条
[31]   The dynamic process of mRNA delivery by lipid nanoparticles in vivo [J].
Ma, Runpu ;
Li, Yuting ;
Wei, Yi ;
Zhou, Juanjuan ;
Ma, Jinya ;
Zhang, Mengke ;
Tu, Junyi ;
Jiang, Jinhong ;
Xie, Sitao ;
Tan, Weihong ;
Liu, Xiangsheng .
NANO TODAY, 2024, 57
[32]   Lipid Nanoparticles for mRNA Delivery to Enhance Cancer Immunotherapy [J].
Wang, Hong-Li ;
Wang, Zhi-Gang ;
Liu, Shu-Lin .
MOLECULES, 2022, 27 (17)
[33]   Branched-Tail Lipid Nanoparticles for Intravenous mRNA Delivery to Lung Immune, Endothelial, and Alveolar Cells in Mice [J].
Petersen, Daria M. Strelkova ;
Weiss, Ryan M. ;
Hajj, Khalid A. ;
Yerneni, Saigopalakrishna S. ;
Chaudhary, Namit ;
Newby, Alexandra N. ;
Arral, Mariah L. ;
Whitehead, Kathryn A. .
ADVANCED HEALTHCARE MATERIALS, 2024, 13 (22)
[34]   In utero delivery of targeted ionizable lipid nanoparticles facilitates in vivo gene editing of hematopoietic stem cells [J].
Palanki, Rohan ;
Riley, John S. ;
Bose, Sourav K. ;
Luks, Valerie ;
Dave, Apeksha ;
Kus, Nicole ;
White, Brandon M. ;
Ricciardi, Adele S. ;
Swingle, Kelsey L. ;
Xue, Lulu ;
Sung, Derek ;
Thatte, Ajay S. ;
Safford, Hannah C. ;
Chaluvadi, Venkata S. ;
Carpenter, Marco ;
Han, Emily L. ;
Maganti, Rohin ;
Hamilton, Alex G. ;
Mrksich, Kaitlin ;
Billingsley, Margaret B. ;
Zoltick, Philip W. ;
Alameh, Mohamad- Gabriel ;
Weissman, Drew ;
Mitchell, Michael J. ;
Peranteau, William H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (32)
[35]   Strategies for Organ-Targeted mRNA Delivery by Lipid Nanoparticles [J].
Liao, Hangping ;
Liao, Jing ;
Zeng, Ling ;
Cao, Xinxiu ;
Fan, Hui ;
Chen, Jinjin .
WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2024, 16 (05)
[36]   mRNA delivery systems for cancer immunotherapy: Lipid nanoparticles and beyond [J].
Senti, Mariona Estape ;
del Valle, Lucia Garcia ;
Schiffelers, Raymond M. .
ADVANCED DRUG DELIVERY REVIEWS, 2024, 206
[37]   mRNA Lipid Nanoparticles for Ex Vivo Engineering of Immunosuppressive T Cells for Autoimmunity Therapies [J].
Thatte, Ajay S. ;
Hamilton, Alex G. ;
Nachod, Benjamin E. ;
Mukalel, Alvin J. ;
Billingsley, Margaret M. ;
Palanki, Rohan ;
Swingle, Kelsey L. ;
Mitchell, Michael J. .
NANO LETTERS, 2023, 23 (22) :10179-10188
[38]   Combinatorial Screening of Biscarbamate Ionizable Lipids Identifies a Low Reactogenicity Lipid for Lipid Nanoparticle mRNA Delivery [J].
De Lombaerde, Emily ;
Chen, Yong ;
Ye, Tingting ;
Deckers, Julie ;
Mencarelli, Giulia ;
De Swarte, Kim ;
Lauwers, Heleen ;
De Coen, Ruben ;
Kasmi, Sabah ;
Bevers, Sanne ;
Kuchmiy, Anna ;
Bogaert, Bram ;
Baekens, Lies ;
Zhong, Zifu ;
Lamoot, Alexander ;
Sanders, Niek N. ;
Lambrecht, Bart N. ;
Baptista, Antonio P. ;
De Koker, Stefaan ;
De Geest, Bruno G. .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (21)
[39]   Ionizable lipid nanoparticles for RAS protease delivery to inhibit cancer cell proliferation [J].
Atsavapranee, Ella ;
Haley, Rebecca M. ;
Billingsley, Margaret M. ;
Chan, Alexander ;
Ruan, Biao ;
Figueroa-Espada, Christian G. ;
Gong, Ningqiang ;
Mukalel, Alvin J. ;
Bryan, Philip N. ;
Mitchell, Michael J. .
JOURNAL OF CONTROLLED RELEASE, 2024, 370 :614-625
[40]   Enhanced mRNA delivery via incorporating hydrophobic amines into lipid nanoparticles [J].
Wang, Longyu ;
Li, Yichen ;
Jiang, Pingge ;
Bai, Hao ;
Wu, Chengfan ;
Shuai, Qi ;
Yan, Yunfeng .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2025, 249