Visualization and clustering of categorical data with probabilistic self-organizing map

被引:3
|
作者
Lebbah, Mustapha [2 ]
Benabdeslem, Khalid [1 ]
机构
[1] Univ Lyon 1, EA4125, LIESP, F-69622 Lyon, France
[2] Univ Paris 13, LIPN, UMR 7030, CNRS, F-93430 Villetaneuse, France
来源
NEURAL COMPUTING & APPLICATIONS | 2010年 / 19卷 / 03期
关键词
Probabilistic self-organizing map; Categorical variables; Visualization; EM algorithm; MODEL; BERNOULLI;
D O I
10.1007/s00521-009-0299-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a self-organizing map dedicated to clustering, analysis and visualization of categorical data. Usually, when dealing with categorical data, topological maps use an encoding stage: categorical data are changed into numerical vectors and traditional numerical algorithms (SOM) are run. In the present paper, we propose a novel probabilistic formalism of Kohonen map dedicated to categorical data where neurons are represented by probability tables. We do not need to use any coding to encode variables. We evaluate the effectiveness of our model in four examples using real data. Our experiments show that our model provides a good quality of results when dealing with categorical data.
引用
收藏
页码:393 / 404
页数:12
相关论文
共 50 条
  • [1] Visualization and clustering of categorical data with probabilistic self-organizing map
    Mustapha Lebbah
    Khalid Benabdeslem
    Neural Computing and Applications, 2010, 19 : 393 - 404
  • [2] A PROBABILISTIC SELF-ORGANIZING MAP FOR BINARY DATA TOPOGRAPHIC CLUSTERING
    Lebbah, Mustapha
    Bennani, Younes
    Rogovschi, Nicoleta
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE AND APPLICATIONS, 2008, 7 (04) : 363 - 383
  • [3] A self-organizing map with expanding force for data clustering and visualization
    Shum, WH
    Jin, HD
    Leung, KS
    Wong, ML
    2002 IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2002, : 434 - 441
  • [4] A self-organizing map for clustering probabilistic models
    Hollmén, J
    Tresp, V
    Simula, O
    NINTH INTERNATIONAL CONFERENCE ON ARTIFICIAL NEURAL NETWORKS (ICANN99), VOLS 1 AND 2, 1999, (470): : 946 - 951
  • [5] Generalizing self-organizing map for categorical data
    Hsu, CC
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2006, 17 (02): : 294 - 304
  • [6] A MODIFIED KOHONEN SELF-ORGANIZING MAP (KSOM) CLUSTERING FOR FOUR CATEGORICAL DATA
    Ahmad, Azlin
    Yusof, Rubiyah
    JURNAL TEKNOLOGI, 2016, 78 (6-13): : 75 - 80
  • [7] Clustering and visualization of bankruptcy trajectory using self-organizing map
    Chen, Ning
    Ribeiro, Bernardete
    Vieira, Armando
    Chen, An
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (01) : 385 - 393
  • [8] A self-organizing map based approach for document clustering and visualization
    Yen, Gary G.
    Wu, Zheng
    2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 3279 - +
  • [9] Clustering of the self-organizing map
    Vesanto, J
    Alhoniemi, E
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (03): : 586 - 600
  • [10] A self-organizing map for transactional data and the related categorical domain
    Liao, Wen-Chung
    Hsu, Chung-Chian
    APPLIED SOFT COMPUTING, 2012, 12 (10) : 3141 - 3157