The lightlike flat geometry on spacelike submanifolds of codimension two in Minkowski space

被引:26
作者
Izumiya, Shyuichi [1 ]
del Carmen Romero Fuster, Maria
机构
[1] Hokkaido Univ, Dept Math, Sapporo, Hokkaido 0600810, Japan
[2] Univ Valencia, Dept Geometria & Topol, E-46100 Burjassot, Spain
来源
SELECTA MATHEMATICA-NEW SERIES | 2007年 / 13卷 / 01期
关键词
lightcone Gauss map; lightlike Gauss-kronecker curvature; Gauss-Bonnet theorem;
D O I
10.1007/s00029-007-0033-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of the lightcone Gauss--Kronecker curvature for a spacelike submanifold of codimension two in Minkowski space, which is a generalization of the ordinary notion of Gauss curvature of hypersurfaces in Euclidean space. In the local sense, this curvature describes the contact of such submanifolds with lightlike hyperplanes. We study geometric properties of such curvatures and show a Gauss-Bonnet type theorem. As examples we have hypersurfaces in hyperbolic space, spacelike hypersurfaces in the lightcone and spacelike hypersurfaces in de Sitter space.
引用
收藏
页码:23 / 55
页数:33
相关论文
共 51 条
[1]  
Arnold V. I., 1986, Singularities of Differentiable Maps, VI
[2]  
Banchoff T., 1982, Research Notes in Math., V55
[4]   THE DUALS OF GENERIC HYPERSURFACES [J].
BRUCE, JW .
MATHEMATICA SCANDINAVICA, 1981, 49 (01) :36-60
[5]  
BRUCE JW, 1994, LOND MATH S, V201, P29
[6]   GENERIC GEOMETRY, TRANSVERSALITY AND PROJECTIONS [J].
BRUCE, JW .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1994, 49 :183-194
[7]  
CHANDRASEKHAR S, 1983, INTERNAT SER MONOGRA, V69
[8]  
FUSTER MCR, 1983, P ROY SOC EDINB A, V95, P115
[9]   Affine-invariant distances, envelopes and symmetry sets [J].
Giblin, PJ ;
Sapiro, G .
GEOMETRIAE DEDICATA, 1998, 71 (03) :237-261
[10]   CONTACT EQUIVALENCE FOR LAGRANGIAN MANIFOLDS [J].
GOLUBITSKY, M ;
GUILLEMIN, V .
ADVANCES IN MATHEMATICS, 1975, 15 (03) :375-387