MORSE AREA AND SCHARLEMANN-THOMPSON WIDTH FOR HYPERBOLIC 3-MANIFOLDS

被引:2
|
作者
Hoffoss, Diane [1 ]
Maher, Joseph [2 ,3 ]
机构
[1] Univ San Diego, Dept Math & Comp Sci, 5998 Alcala Pk, San Diego, CA 92110 USA
[2] CUNY Coll Staten Isl, Dept Math, 2800 Victory Blvd, Staten Isl, NY 10314 USA
[3] CUNY Grad Ctr, 2800 Victory Blvd, Staten Isl, NY 10314 USA
关键词
hyperbolic; 3-manifold; Heegaard splitting; Morse function; Scharlemann-Thompson width; MINIMAL-SURFACES;
D O I
10.2140/pjm.2016.281.83
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Scharlemann and Thompson define a numerical complexity for a 3-manifold using handle decompositions of the manifold. We show that for compact hyperbolic 3-manifolds, this is linearly related to a definition of metric complexity in terms of the areas of level sets of Morse functions.
引用
收藏
页码:83 / 102
页数:20
相关论文
共 50 条
  • [1] Tubes in hyperbolic 3-manifolds
    Przeworski, A
    TOPOLOGY AND ITS APPLICATIONS, 2003, 128 (2-3) : 103 - 122
  • [2] Primitive stable closed hyperbolic 3-manifolds
    Kim, Inkang
    Lecuire, Cyril
    Ohshika, Ken'ichi
    TOPOLOGY AND ITS APPLICATIONS, 2014, 172 : 68 - 71
  • [3] Verified Computations for Hyperbolic 3-Manifolds
    Hoffman, Neil
    Ichihara, Kazuhiro
    Kashiwagi, Masahide
    Masai, Hidetoshi
    Oishi, Shin'ichi
    Takayasu, Akitoshi
    EXPERIMENTAL MATHEMATICS, 2016, 25 (01) : 66 - 78
  • [4] QUASICONVEXITY OF BANDS IN HYPERBOLIC 3-MANIFOLDS
    Bowditch, Brian H.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2014, 96 (02) : 167 - 185
  • [5] Cusp densities of hyperbolic 3-manifolds
    Adams, C
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2002, 45 : 277 - 284
  • [6] Laminar free hyperbolic 3-manifolds
    Fenley, Sergio R.
    COMMENTARII MATHEMATICI HELVETICI, 2007, 82 (02) : 247 - 321
  • [7] VIRTUAL FIBERS IN HYPERBOLIC 3-MANIFOLDS
    SOMA, T
    TOPOLOGY AND ITS APPLICATIONS, 1991, 41 (03) : 179 - 192
  • [8] Hyperbolic 3-manifolds in the 2000's
    Gabai, David
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL II: INVITED LECTURES, 2010, : 960 - 972
  • [9] Mom technology and volumes of hyperbolic 3-manifolds
    Gabai, David
    Meyerhoff, Robert
    Milley, Peter
    COMMENTARII MATHEMATICI HELVETICI, 2011, 86 (01) : 145 - 188
  • [10] On the prime geodesic theorem for hyperbolic 3-manifolds
    Avdispahic, Muharem
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (14-15) : 2160 - 2167