High-performance rechargeable aqueous Zn-ion batteries with a poly(benzoquinonyl sulfide) cathode

被引:190
|
作者
Dawut, Gulbahar [1 ,2 ]
Lu, Yong [1 ]
Miao, Licheng [1 ]
Chen, Jun [1 ]
机构
[1] Nankai Univ, Coll Chem, Key Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
[2] Kashgar Univ, Coll Chem & Environm Sci, Xinjiang Lab Native Med & Edible Plant Resources, Kashgar 844006, Peoples R China
来源
INORGANIC CHEMISTRY FRONTIERS | 2018年 / 5卷 / 06期
关键词
HIGH-CAPACITY; POLYMER BATTERY; HIGH-ENERGY; INTERCALATION; LI; NANOCOMPOSITE; POLYPYRROLE; GRAPHENE; DENSITY; CARBON;
D O I
10.1039/c8qi00197a
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
We report high-performance aqueous Zn-ion batteries consisting of a zinc anode, a poly(benzoquinonyl sulfide) (PBQS) cathode, and a 3 M Zn(CF3SO3)(2) aqueous electrolyte. The PBQS cathode displays an initial discharge capacity of 203 mA h g(-1) at 0.1C and a good capacity retention of 86% after 50 cycles at 0.2C. The PBQS cathode can deliver a high reversible capacity of 126 mA h g(-1) at a high rate of 5.0C. Meanwhile, we also studied the redox mechanism during discharge/charge processes by ex situ infrared spectra and theoretical calculations, revealing that reversible bonding of Zn2+ ions with carbonyl oxygen atoms in PBQS occurs in the redox reactions of PBQS molecules. The redox reactions of PBQS molecules can be regarded as the reversible bonding of Zn2+ ions with carbonyl oxygen atoms in PBQS.
引用
收藏
页码:1391 / 1396
页数:6
相关论文
共 50 条
  • [1] Boosting the Zn-ion transfer kinetics to stabilize the Zn metal interface for high-performance rechargeable Zn-ion batteries
    Hong, Lin
    Wu, Xiuming
    Ma, Chao
    Huang, Wei
    Zhou, Yongfeng
    Wang, Kai-Xue
    Chen, Jie-Sheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (31) : 16814 - 16823
  • [2] Structurally reconstituted calcium manganate nanoparticles as a high-performance cathode for aqueous Zn-ion batteries
    Zeng, Siqi
    Xu, Wei
    Zheng, Dezhou
    Zhang, Haozhe
    Wang, Fuxin
    Liu, Xiaoqing
    Lu, Xihong
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (08) : 5053 - 5059
  • [3] Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries
    Song, Zhiping
    Qian, Yumin
    Zhang, Tao
    Otani, Minoru
    Zhou, Haoshen
    ADVANCED SCIENCE, 2015, 2 (09)
  • [4] A High-Performance Alginate Hydrogel Binder for Aqueous Zn-Ion Batteries
    Xie, Dongmei
    Zhao, Jiachang
    Jiang, Qiong
    Wang, Hao
    Huang, Haiji
    Rao, Pinhua
    Mao, Jianfeng
    CHEMPHYSCHEM, 2022, 23 (17)
  • [5] A High Capacity Bilayer Cathode for Aqueous Zn-Ion Batteries
    Zhu, Kaiyue
    Wu, Tao
    Huang, Kevin
    ACS NANO, 2019, 13 (12) : 14447 - 14458
  • [6] Edge-Enriched MoS2 as a High-Performance Cathode for Aqueous Zn-Ion Batteries
    Niu, Mengfan
    Wan, Falian
    Xin, Wenli
    Zhang, Lei
    Xiao, Xilin
    Zhang, Hui
    Yan, Zichao
    Zhu, Zhiqiang
    BATTERIES & SUPERCAPS, 2025, 8 (02)
  • [7] A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries
    Selvakumaran, Dinesh
    Pan, Anqiang
    Liang, Shuquan
    Cao, Guozhong
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (31) : 18209 - 18236
  • [8] Porous hydrated ammonium vanadate as a novel cathode for aqueous rechargeable Zn-ion batteries
    Qiu, Nan
    Chen, Hong
    Yang, Zhaoming
    Zhu, Yingming
    Liu, Wei
    Wang, Yuan
    CHEMICAL COMMUNICATIONS, 2020, 56 (26) : 3785 - 3788
  • [9] Al doped manganous oxide for high-performance aqueous Zn-ion batteries
    He, Bo
    Huang, Jing
    Ji, Peng
    Hoang, Tuan K. A.
    Han, Mei
    Li, Linjie
    Zhang, Lei
    Gao, Zhongfeng
    Ma, Junhong
    Zhi, Jian
    Chen, P.
    JOURNAL OF POWER SOURCES, 2023, 554
  • [10] Hybrid Aqueous/Organic Electrolytes Enable the High-Performance Zn-Ion Batteries
    Huang, Jian-Qiu
    Guo, Xuyun
    Lin, Xiuyi
    Zhu, Ye
    Zhang, Biao
    RESEARCH, 2019, 2019