Trajectory probability hypothesis density filter

被引:0
作者
Garcia-Fernandez, Angel F. [1 ]
Svensson, Lennart [2 ]
机构
[1] Univ Liverpool, Dept Elect Engn & Elect, Liverpool, Merseyside, England
[2] Chalmers Univ Technol, Dept Elect Engn, Gothenburg, Sweden
来源
2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION) | 2018年
关键词
Random finite sets; multitarget tracking; sets of trajectories; PHD filter; DATA ASSOCIATION; PHD;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the probability hypothesis density (PHD) filter for sets of trajectories: the trajectory probability density (TPHD) filter. The TPHD filter is capable of estimating trajectories in a principled way without requiring to evaluate all measurement-to-target association hypotheses. The TPHD filter is based on recursively obtaining the best Poisson approximation to the multitrajectory filtering density in the sense of minimising the Kullback-Leibler divergence. We also propose a Gaussian mixture implementation of the TPHD recursion. Finally, we include simulation results to show the performance of the proposed algorithm.
引用
收藏
页码:1430 / 1437
页数:8
相关论文
共 50 条
[41]   Track Probability Hypothesis Density Filter for Multi-target Tracking [J].
Wang, Yan ;
Meng, Huadong ;
Zhang, Hao ;
Wang, Xiqin .
2011 IEEE RADAR CONFERENCE (RADAR), 2011, :612-615
[42]   Global Space-time Association for Probability Hypothesis Density Filter [J].
Shi, Xi ;
Yang, Feng ;
Liang, Yan ;
Pan, Quan ;
Wang, Yongqi .
2013 16TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2013, :304-311
[43]   Probability hypothesis density filter with adaptive estimation of target birth intensity [J].
Zhu, Youqing ;
Zhou, Shilin ;
Zou, Huanxin ;
Ji, Kefeng .
IET RADAR SONAR AND NAVIGATION, 2016, 10 (05) :901-911
[44]   Multitarget tracking with the cubature Kalman particle probability hypothesis density filter [J].
Wang, Hai-Huan ;
Wang, Jun .
Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2015, 37 (09) :1960-1966
[45]   MULTIPLE TARGET TRAJECTORY CONTINUITY BASED ON GAUSSIAN MIXTURE PROBABILITY HYPOTHESIS DENSITY [J].
Zhang, Huanqing ;
Ge, Hongwei ;
Yang, Jinlong ;
Li, Peng .
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2016, 12 (02) :591-601
[46]   Multi-Sensor Multi-Target Tracking Using Probability Hypothesis Density Filter [J].
Liu, Long ;
Ji, Hongbing ;
Zhang, Wenbo ;
Liao, Guisheng .
IEEE ACCESS, 2019, 7 :67745-67760
[47]   Adaptive Collaborative Gaussian Mixture Probability Hypothesis Density Filter for Multi-Target Tracking [J].
Yang, Feng ;
Wang, Yongqi ;
Chen, Hao ;
Zhang, Pengyan ;
Liang, Yan .
SENSORS, 2016, 16 (10)
[48]   Multi-target Tracking with the Progressive Gaussian Probability Hypothesis Density filter [J].
Wang, Junjie ;
Zhao, Lingling ;
Su, Xiaohong ;
Shi, Chunmei .
2018 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2018, :78-83
[49]   Multi-target state extraction for the particle probability hypothesis density filter [J].
Tang, X. ;
Wei, P. .
IET RADAR SONAR AND NAVIGATION, 2011, 5 (08) :877-883
[50]   A measurement-driven adaptive probability hypothesis density filter for multitarget tracking [J].
Si Weijian ;
Wang Liwei ;
Qu Zhiyu .
Chinese Journal of Aeronautics, 2015, (06) :1689-1698