A global compactness result for singular elliptic problems involving critical Sobolev exponent

被引:66
作者
Cao, DM [1 ]
Peng, SJ
机构
[1] Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Xiao Gan Univ, Dept Math, Xiao Gan, Peoples R China
关键词
Palais-Smale sequence; compactness; Sobolev and Hardy critical exponents;
D O I
10.1090/S0002-9939-02-06729-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega subset of R-N be a bounded domain such that 0 is an element of Omega, N greater than or equal to 3, 2* = 2N/N-2, lambda is an element of R, epsilon is an element of R. Let {u(n)} subset of H-0(1)(Omega) be a (P.S.) sequence of the functional E-lambda,E-epsilon(u) = 1/2 integral(Omega)(\delu\(2) - lambdau(2) / \x\(2) - epsilonu(2)) - 1/2* integral(Omega)\u\(2*). We study the limit behaviour of un and obtain a global compactness result.
引用
收藏
页码:1857 / 1866
页数:10
相关论文
共 18 条
[12]  
Gilbar D., 1983, ELLIPTIC PARTIAL DIF
[13]   The role played by space dimension in elliptic critical problems [J].
Jannelli, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 156 (02) :407-426
[14]  
Lions P. L., 1985, Rev. Mat. Iberoam., V1, P145
[15]   ON A NEUMANN PROBLEM WITH CRITICAL EXPONENT AND CRITICAL NONLINEARITY ON THE BOUNDARY [J].
PIEROTTI, D ;
TERRACINI, S .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (7-8) :1155-1187
[16]  
STRUWE M, 1984, MATH Z, V187, P511, DOI 10.1007/BF01174186
[17]  
Terracini S, 1996, ADV DIFF EQNS, V1, P241
[18]  
Yan S.S., 1995, CHINESE ANN MATH A, V16, P397