A global compactness result for singular elliptic problems involving critical Sobolev exponent

被引:66
作者
Cao, DM [1 ]
Peng, SJ
机构
[1] Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Xiao Gan Univ, Dept Math, Xiao Gan, Peoples R China
关键词
Palais-Smale sequence; compactness; Sobolev and Hardy critical exponents;
D O I
10.1090/S0002-9939-02-06729-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega subset of R-N be a bounded domain such that 0 is an element of Omega, N greater than or equal to 3, 2* = 2N/N-2, lambda is an element of R, epsilon is an element of R. Let {u(n)} subset of H-0(1)(Omega) be a (P.S.) sequence of the functional E-lambda,E-epsilon(u) = 1/2 integral(Omega)(\delu\(2) - lambdau(2) / \x\(2) - epsilonu(2)) - 1/2* integral(Omega)\u\(2*). We study the limit behaviour of un and obtain a global compactness result.
引用
收藏
页码:1857 / 1866
页数:10
相关论文
共 18 条
[1]   Global compactness properties of semilinear elliptic equations with critical exponential growth [J].
Adimurthi ;
Struwe, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 175 (01) :125-167
[2]  
Azorero JPG, 1998, J DIFFER EQUATIONS, V144, P441
[3]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[4]   A RELATION BETWEEN POINTWISE CONVERGENCE OF FUNCTIONS AND CONVERGENCE OF FUNCTIONALS [J].
BREZIS, H ;
LIEB, E .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 88 (03) :486-490
[5]  
Catrina F., 2000, COMMUN PUR APPL MATH, V53, P1, DOI [10.1002/(SICI)1097-0312(200001)53:13.0.CO
[6]  
2-U, DOI 10.1002/(SICI)1097-0312(200001)53:13.0.CO
[7]  
2-U]
[8]   ON THE BEST CONSTANT FOR A WEIGHTED SOBOLEV-HARDY INEQUALITY [J].
CHOU, KS ;
CHU, CW .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1993, 48 :137-151
[9]  
CORON JM, 1984, CR ACAD SCI I-MATH, V299, P209
[10]  
Ding W., 1989, J. Partial Differ. Equ., V2, P83