Group rings in which every element is uniquely the sum of a unit and an idempotent

被引:43
作者
Chen, J.
Nicholson, W. K. [2 ]
Zhou, Y.
机构
[1] SE Univ, Dept Math, Nanjing 210096, Peoples R China
[2] Univ Calgary, Dept Math, Calgary, AB T2N 1N4, Canada
[3] Mem Univ Newfoundland, Dept Math, St John, NF A1C 5S7, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
clean rings; group rings; Boolean rings; idempotents;
D O I
10.1016/j.jalgebra.2006.08.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ring R is called clean if every element is the sum of an idempotent and a unit, and R is called uniquely clean if this representation is unique. These rings are related to the boolean rings: R is uniquely clean if and only if R/J(R) is boolean, idempotents lift modulo J(R), and idempotents in R are central. It is shown that if the group ring RG is uniquely clean then R is uniquely clean and G is a 2-group. The converse holds if G is locally finite (in particular if G is solvable). (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:453 / 460
页数:8
相关论文
共 11 条
  • [1] Continuous modules are clean
    Camillo, V. P.
    Khurana, D.
    Lam, T. Y.
    Nicholson, W. K.
    Zhou, Y.
    [J]. JOURNAL OF ALGEBRA, 2006, 304 (01) : 94 - 111
  • [2] A characterization of unit regular rings
    Camillo, VP
    Khurana, D
    [J]. COMMUNICATIONS IN ALGEBRA, 2001, 29 (05) : 2293 - 2295
  • [3] EXCHANGE RINGS, UNITS AND IDEMPOTENTS
    CAMILLO, VP
    YU, HP
    [J]. COMMUNICATIONS IN ALGEBRA, 1994, 22 (12) : 4737 - 4749
  • [4] GROUP RING
    CONNELL, IG
    [J]. CANADIAN JOURNAL OF MATHEMATICS, 1963, 15 (04): : 650 - &
  • [5] Extensions of clean rings
    Han, J
    Nicholson, NK
    [J]. COMMUNICATIONS IN ALGEBRA, 2001, 29 (06) : 2589 - 2595
  • [6] Kegel O. H., 1973, LOCALLY FINITE GROUP
  • [7] LIFTING IDEMPOTENTS AND EXCHANGE RINGS
    NICHOLSON, WK
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 229 (MAY) : 269 - 278
  • [8] Clean general rings
    Nicholson, WK
    Zhou, Y
    [J]. JOURNAL OF ALGEBRA, 2005, 291 (01) : 297 - 311
  • [9] Rings in which elements are uniquely the sum of an idempotent and a unit
    Nicholson, WK
    Zhou, Y
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2004, 46 : 227 - 236
  • [10] LOCAL GROUP RINGS
    NICHOLSON, WK
    [J]. CANADIAN MATHEMATICAL BULLETIN, 1972, 15 (01): : 137 - +