Group rings in which every element is uniquely the sum of a unit and an idempotent

被引:44
作者
Chen, J.
Nicholson, W. K. [2 ]
Zhou, Y.
机构
[1] SE Univ, Dept Math, Nanjing 210096, Peoples R China
[2] Univ Calgary, Dept Math, Calgary, AB T2N 1N4, Canada
[3] Mem Univ Newfoundland, Dept Math, St John, NF A1C 5S7, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
clean rings; group rings; Boolean rings; idempotents;
D O I
10.1016/j.jalgebra.2006.08.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A ring R is called clean if every element is the sum of an idempotent and a unit, and R is called uniquely clean if this representation is unique. These rings are related to the boolean rings: R is uniquely clean if and only if R/J(R) is boolean, idempotents lift modulo J(R), and idempotents in R are central. It is shown that if the group ring RG is uniquely clean then R is uniquely clean and G is a 2-group. The converse holds if G is locally finite (in particular if G is solvable). (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:453 / 460
页数:8
相关论文
共 11 条
[1]   Continuous modules are clean [J].
Camillo, V. P. ;
Khurana, D. ;
Lam, T. Y. ;
Nicholson, W. K. ;
Zhou, Y. .
JOURNAL OF ALGEBRA, 2006, 304 (01) :94-111
[2]   A characterization of unit regular rings [J].
Camillo, VP ;
Khurana, D .
COMMUNICATIONS IN ALGEBRA, 2001, 29 (05) :2293-2295
[3]   EXCHANGE RINGS, UNITS AND IDEMPOTENTS [J].
CAMILLO, VP ;
YU, HP .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (12) :4737-4749
[4]   GROUP RING [J].
CONNELL, IG .
CANADIAN JOURNAL OF MATHEMATICS, 1963, 15 (04) :650-&
[5]   Extensions of clean rings [J].
Han, J ;
Nicholson, NK .
COMMUNICATIONS IN ALGEBRA, 2001, 29 (06) :2589-2595
[6]  
Kegel O. H., 1973, LOCALLY FINITE GROUP
[7]   LIFTING IDEMPOTENTS AND EXCHANGE RINGS [J].
NICHOLSON, WK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 229 (MAY) :269-278
[8]   Clean general rings [J].
Nicholson, WK ;
Zhou, Y .
JOURNAL OF ALGEBRA, 2005, 291 (01) :297-311
[9]   Rings in which elements are uniquely the sum of an idempotent and a unit [J].
Nicholson, WK ;
Zhou, Y .
GLASGOW MATHEMATICAL JOURNAL, 2004, 46 :227-236
[10]   LOCAL GROUP RINGS [J].
NICHOLSON, WK .
CANADIAN MATHEMATICAL BULLETIN, 1972, 15 (01) :137-+