Regulation of Phosphate Starvation Responses in Plants: Signaling Players and Cross-Talks

被引:293
作者
Rouached, Hatem [1 ]
Arpat, A. Bulak [1 ]
Poirier, Yves [1 ]
机构
[1] Univ Lausanne, Dept Plant Mol Biol, CH-1015 Lausanne, Switzerland
关键词
Phosphate; signaling; SPX; iron; phytohormones; PHO1 GENE FAMILY; ROOT-SYSTEM ARCHITECTURE; TRANSCRIPTION FACTOR; TRANSDUCTION PATHWAY; INORGANIC-PHOSPHATE; EXPRESSION ANALYSIS; ION TRANSPORTERS; SHORT HYPOCOTYL; PROTEIN-KINASE; SPX DOMAIN;
D O I
10.1093/mp/ssp120
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Phosphate (Pi) availability is a major factor limiting growth, development, and productivity of plants. In both ecological and agricultural contexts, plants often grow in soils with low soluble phosphate content. Plants respond to this situation by a series of developmental and metabolic adaptations that are aimed at increasing the acquisition of this vital nutrient from the soil, as well as to sustain plant growth and survival. The development of a comprehensive understanding of how plants sense phosphate deficiency and coordinate the responses via signaling pathways has become of major interest, and a number of signaling players and networks have begun to surface for the regulation of the phosphate-deficiency response. In practice, application of such knowledge to improve plant Pi nutrition is hindered by complex cross-talks, which are emerging in the face of new data, such as the coordination of the phosphate-deficiency signaling networks with those involved with hormones, photo-assimilates (sugar), as well as with the homeostasis of other ions, such as iron. In this review, we focus on these cross-talks and on recent progress in discovering new signaling players involved in the Pi-starvation responses, such as proteins having SPX domains.
引用
收藏
页码:288 / 299
页数:12
相关论文
共 130 条
[1]   Temporal responses of Arabidopsis root architecture to phosphate starvation:: evidence for the involvement of auxin signalling [J].
Al-Ghazi, Y ;
Muller, B ;
Pinloche, S ;
Tranbarger, TJ ;
Nacry, P ;
Rossignol, M ;
Tardieu, F ;
Doumas, P .
PLANT CELL AND ENVIRONMENT, 2003, 26 (07) :1053-1066
[2]   Nutrient sensing and signalling in plants: Potassium and phosphorus [J].
Amtmann, A ;
Hammond, JP ;
Armengaud, P ;
White, PJ .
ADVANCES IN BOTANICAL RESEARCH, VOL 43: INCORPORATING ADVANCES IN PLANT PATHOLOGY, 2006, 43 :209-257
[3]   Transcriptional regulation of phosphate-responsive genes in low-affinity phosphate-transporter-defective mutants in Saccharomyces cerevisiae [J].
Auesukaree, C ;
Homma, T ;
Kaneko, Y ;
Harashima, S .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2003, 306 (04) :843-850
[4]   Extra domains in secondary transport carriers and channel proteins [J].
Barabote, Ravi D. ;
Tamang, Dorjee G. ;
Abeywardena, Shannon N. ;
Fallah, Neda S. ;
Fu, Jeffrey Yu Chung ;
Lio, Jeffrey K. ;
Mirhosseini, Pegah ;
Pezeshk, Ronnie ;
Podell, Sheila ;
Salampessy, Marnae L. ;
Thever, Mark D. ;
Saier, Milton H., Jr. .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2006, 1758 (10) :1557-1579
[5]   PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants [J].
Bari, Rajendra ;
Pant, Bikram Datt ;
Stitt, Mark ;
Scheible, Wolf-Ruediger .
PLANT PHYSIOLOGY, 2006, 141 (03) :988-999
[6]   Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades [J].
Brenner, WG ;
Romanov, GA ;
Köllmer, I ;
Bürkle, L ;
Schmülling, T .
PLANT JOURNAL, 2005, 44 (02) :314-333
[7]   The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots [J].
Burleigh, SH ;
Harrison, MJ .
PLANT PHYSIOLOGY, 1999, 119 (01) :241-248
[8]   A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular-arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition [J].
Burleigh, SH ;
Harrison, MJ .
PLANT MOLECULAR BIOLOGY, 1997, 34 (02) :199-208
[9]   Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels [J].
Calderon-Vazquez, Carlos ;
Ibarra-Laclette, Enrique ;
Caballero-Perez, Juan ;
Herrera-Estrella, Luis .
JOURNAL OF EXPERIMENTAL BOTANY, 2008, 59 (09) :2479-2497
[10]   The fungicide phosphonate disrupts the phosphate-starvation response in Brassica nigra seedlings [J].
Carswell, C ;
Grant, BR ;
Theodorou, ME ;
Harris, L ;
Niere, JO ;
Plaxton, WC .
PLANT PHYSIOLOGY, 1996, 110 (01) :105-110