Artificial Coherent States of Light by Multiphoton Interference in a Single-Photon Stream

被引:14
|
作者
Steindl, P. [1 ]
Snijders, H. [1 ]
Westra, G. [1 ]
Hissink, E. [1 ]
Iakovlev, K. [1 ]
Polla, S. [1 ]
Frey, J. A. [2 ]
Norman, J. [3 ]
Gossard, A. C. [3 ]
Bowers, J. E. [3 ]
Bouwmeester, D. [1 ,2 ]
Loffler, W. [1 ]
机构
[1] Leiden Univ, Huygens Kamerlingh Onnes Lab, POB 9504, NL-2300 RA Leiden, Netherlands
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[3] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
基金
欧盟地平线“2020”; 美国国家科学基金会;
关键词
D O I
10.1103/PhysRevLett.126.143601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Coherent optical states consist of a quantum superposition of different photon number (Fock) states, but because they do not form an orthogonal basis, no photon number states can be obtained from it by linear optics. Here we demonstrate the reverse, by manipulating a random continuous single-photon stream using quantum interference in an optical Sagnac loop, we create engineered quantum states of light with tunable photon statistics, including approximate weak coherent states. We demonstrate this experimentally using a true single-photon stream produced by a semiconductor quantum dot in an optical microcavity, and show that we can obtain light with g((2)) (0) -> 1 in agreement with our theory, which can only be explained by quantum interference of at least 3 photons. The produced artificial light states are, however, much more complex than coherent states, containing quantum entanglement of photons, making them a resource for multiphoton entanglement.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] UNIFIED APPROACH TO THE ANALOGS OF SINGLE-PHOTON AND MULTIPHOTON COHERENT STATES FOR GENERALIZED BOSONIC OSCILLATORS
    SHANTA, P
    CHATURVEDI, S
    SRINIVASAN, V
    JAGANNATHAN, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (19): : 6433 - 6442
  • [2] Resonant single-photon and multiphoton coherent transitions in a detuned regime
    Bertaina, S.
    Martens, M.
    Egels, M.
    Barakel, D.
    Chiorescu, I.
    PHYSICAL REVIEW B, 2015, 92 (02)
  • [3] Multiphoton nonclassical light from clusters of single-photon emitters
    Qi, Luo
    Manceau, Mathieu
    Cavanna, Andrea
    Gumpert, Fabian
    Carbone, Luigi
    de Vittorio, Massimo
    Bramati, Alberto
    Giacobino, Elisabeth
    Lachman, Lukas
    Filip, Radim
    Chekhova, Maria
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [4] Single-photon characteristics of superposed weak coherent states
    Lee, Seung-Woo
    Kim, Jaewan
    PHYSICAL REVIEW A, 2019, 99 (01)
  • [5] Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source
    Migdall, AL
    Branning, D
    Castelletto, S
    PHYSICAL REVIEW A, 2002, 66 (05): : 4
  • [6] Quantum interference between a single-photon Fock state and a coherent state
    Windhager, A.
    Suda, M.
    Pacher, C.
    Peev, M.
    Poppe, A.
    OPTICS COMMUNICATIONS, 2011, 284 (07) : 1907 - 1912
  • [7] QUANTUM COMMUNICATION WITH CONTINUUM SINGLE-PHOTON, TWO-PHOTON AND COHERENT STATES
    Rios, F. Franklin S.
    Guerra, A. Geovan De A. H.
    Viana Ramos, R.
    QUANTUM INFORMATION & COMPUTATION, 2017, 17 (15-16) : 1277 - 1291
  • [8] On single-photon and classical interference
    Barnett, Stephen M.
    PHYSICA SCRIPTA, 2022, 97 (11)
  • [9] Manipulating Light States by Single-Photon Addition and Subtraction
    Bellini, Marco
    Zavatta, Alessandro
    PROGRESS IN OPTICS, VOL 55, 2010, 55 : 41 - 83
  • [10] Single-photon Fock States from Truncated-then-superposed Coherent States
    Rahim, M. A. A.
    Ooi, C. H. Raymond
    Othman, M. A. R.
    JURNAL FIZIK MALAYSIA, 2023, 44 (01): : 10150 - 10158