Experimental comparison of photoplethysmography-based atrial fibrillation detection using simple machine learning methods

被引:1
作者
Bus, Szymon [1 ]
Jedrzejewski, Konrad [1 ]
Krauze, Tomasz [2 ]
Guzik, Przemyslaw [2 ]
机构
[1] Warsaw Univ Technol, Fac Elect & Informat Technol, Inst Elect Syst, Nowowiejska 15-19, PL-00665 Warsaw, Poland
[2] Poznan Univ Med Sci, Dept Cardiol Intens Therapy & Internal Dis, Przybyszewskiego 49, PL-60355 Poznan, Poland
来源
PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH ENERGY PHYSICS EXPERIMENTS 2020 | 2020年 / 11581卷
关键词
AFib detection; machine learning; photoplethysmography; PPG; HRV; IBI;
D O I
10.1117/12.2580594
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The results of experimental studies on application of selected simple machine learning (ML) methods for detection of atrial fibrillation (AFib) based on photoplethysmogram (PPG) are presented in the paper. The goal of the studies was to compare the performance of AFib detection using different ML algorithms in short PPG segments containing 32 consecutive cardiac cycles. Four parameters describing time series of interbeat intervals (IBI) were derived from the time domain Heart Rate Variability (HRV) and used as features for classification algorithms. Optimal values of metaparameters for all considered ML algorithms were experimentally determined. Accuracy, sensitivity, specificity and F1-score were then calculated to measure the quality of detection performance of each classification algorithm.
引用
收藏
页数:7
相关论文
共 50 条
[21]   A Systematic Review on the Effectiveness of Machine Learning in the Detection of Atrial Fibrillation [J].
Wuraola, Abdulraheem Lubabat ;
Al-dwa, Baraah ;
Shchekochikhin, Dmitry ;
Gognieva, Daria ;
Chomakhidze, Petr ;
Kuznetsova, Natalia ;
Kopylov, Philipp ;
Bestavashvilli, Afina A. .
CURRENT CARDIOLOGY REVIEWS, 2025, 21 (01)
[22]   Atrial Fibrillation Detection from Wrist Photoplethysmography Data Using Artificial Neural Networks [J].
Yousefi, Zeinab Rezaei ;
Parak, Jakub ;
Tarniceriu, Adrian ;
Harju, Jarkko ;
Yli-Hankala, Arvi ;
Korhonen, Ilkka ;
Vehkaoja, Antti .
WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING 2018, VOL 2, 2019, 68 (02) :399-404
[23]   A Comparative Evaluation of Atrial Fibrillation Detection Methods in Koreans Based on Optical Recordings Using a Smartphone [J].
Lee, Keonsoo ;
Choi, Hyung Oh ;
Min, Se Dong ;
Lee, Jinseok ;
Guptha, Brij B. ;
Nam, Yunyoung .
IEEE ACCESS, 2017, 5 :11437-11443
[24]   Smartphone detection of atrial fibrillation using photoplethysmography: a systematic review and meta-analysis [J].
Gill, Simrat ;
Bunting, Karina, V ;
Sartini, Claudio ;
Cardoso, Victor Roth ;
Ghoreishi, Narges ;
Uh, Hae-Won ;
Williams, John A. ;
Suzart-Woischnik, Kiliana ;
Banerjee, Amitava ;
Asselbergs, Folkert W. ;
Eijkemans, Mjc ;
Gkoutos, Georgios, V ;
Kotecha, Dipak .
HEART, 2022, 108 (20) :1600-1607
[25]   Potential of machine learning methods to identify patients with nonvalvular atrial fibrillation [J].
Suzuki, Ryoko ;
Katada, Jun ;
Ramagopalan, Sreeram ;
McDonald, Laura .
FUTURE CARDIOLOGY, 2020, 16 (01) :43-52
[26]   A machine learning approach for hypertension detection based on photoplethysmography and clinical data [J].
Martinez-Rios, Erick ;
Montesinos, Luis ;
Alfaro-Ponce, Mariel .
COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 145
[27]   External validation of a machine learning-based classification algorithm for ambulatory heart rhythm diagnostics in pericardioversion atrial fibrillation patients using smartphone photoplethysmography: the SMARTBEATS-ALGO study [J].
Fernstad, Jonatan ;
Svennberg, Emma ;
Aberg, Peter ;
Gudmundsdottir, Katrin Kemp ;
Jansson, Anders ;
Engdahl, Johan .
EUROPACE, 2025, 27 (04)
[28]   Automatic Detection of Atrial Fibrillation from Ballistocardiogram (BCG) Using Wavelet Features and Machine Learning [J].
Yu, Bin ;
Zhang, Biyong ;
Xu, Lisheng ;
Fang, Peng ;
Hu, Jun .
2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, :4322-4325
[29]   A Review on the State of the Art in Atrial Fibrillation Detection Enabled by Machine Learning [J].
Rizwan, Ali ;
Zoha, Ahmed ;
Mabrouk, Ismail Ben ;
Sabbour, Hani M. ;
Al-Sumaiti, Ameena Saad ;
Alomainy, Akram ;
Imran, Muhammad Ali ;
Abbasi, Qammer H. .
IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2021, 14 :219-239
[30]   Application of a machine learning algorithm for detection of atrial fibrillation in secondary care [J].
Pollock, Kevin G. ;
Sekelj, Sara ;
Johnston, Ellie ;
Sandler, Belinda ;
Hill, Nathan R. ;
Ng, Fu Siong ;
Khan, Sadia ;
Nassar, Ayman ;
Farooqui, Usman .
IJC HEART & VASCULATURE, 2020, 31