Experimental comparison of photoplethysmography-based atrial fibrillation detection using simple machine learning methods

被引:1
作者
Bus, Szymon [1 ]
Jedrzejewski, Konrad [1 ]
Krauze, Tomasz [2 ]
Guzik, Przemyslaw [2 ]
机构
[1] Warsaw Univ Technol, Fac Elect & Informat Technol, Inst Elect Syst, Nowowiejska 15-19, PL-00665 Warsaw, Poland
[2] Poznan Univ Med Sci, Dept Cardiol Intens Therapy & Internal Dis, Przybyszewskiego 49, PL-60355 Poznan, Poland
来源
PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH ENERGY PHYSICS EXPERIMENTS 2020 | 2020年 / 11581卷
关键词
AFib detection; machine learning; photoplethysmography; PPG; HRV; IBI;
D O I
10.1117/12.2580594
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The results of experimental studies on application of selected simple machine learning (ML) methods for detection of atrial fibrillation (AFib) based on photoplethysmogram (PPG) are presented in the paper. The goal of the studies was to compare the performance of AFib detection using different ML algorithms in short PPG segments containing 32 consecutive cardiac cycles. Four parameters describing time series of interbeat intervals (IBI) were derived from the time domain Heart Rate Variability (HRV) and used as features for classification algorithms. Optimal values of metaparameters for all considered ML algorithms were experimentally determined. Accuracy, sensitivity, specificity and F1-score were then calculated to measure the quality of detection performance of each classification algorithm.
引用
收藏
页数:7
相关论文
共 50 条
[1]   Photoplethysmography-Based Smart Devices for Detection of Atrial Fibrillation [J].
Sijercic, Adna ;
Tahirovic, Elnur .
TEXAS HEART INSTITUTE JOURNAL, 2022, 49 (05)
[2]   Photoplethysmography-Based Machine Learning Approaches for Atrial Fibrillation Prediction A Report From the Huawei Heart Study [J].
Guo, Yutao ;
Wang, Hao ;
Zhang, Hui ;
Liu, Tong ;
Li, Luping ;
Liu, Lingjie ;
Chen, Maolin ;
Chen, Yundai ;
Lip, Gregory Y. H. .
JACC-ASIA, 2021, 1 (03) :399-408
[3]   Learning From Alarms: A Robust Learning Approach for Accurate Photoplethysmography-Based Atrial Fibrillation Detection Using Eight Million Samples Labeled With Imprecise Arrhythmia Alarms [J].
Ding, Cheng ;
Guo, Zhicheng ;
Rudin, Cynthia ;
Xiao, Ran ;
Shah, Amit ;
Do, Duc H. ;
Lee, Randall J. ;
Clifford, Gari ;
Nahab, Fadi B. ;
Hu, Xiao .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (05) :2650-2661
[4]   Performance of an automated photoplethysmography-based artificial intelligence algorithm to detect atrial fibrillation [J].
Mol, Daniel ;
Riezebos, Robert K. ;
Marquering, Henk A. ;
Werner, Marije E. ;
Lobban, Trudie C. A. ;
de Jong, Jonas S. S. G. ;
de Groot, Joris R. .
CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2020, 1 (02) :107-110
[5]   Fully Automated Photoplethysmography-Based Wearable Atrial Fibrillation Screening in a Hospital Setting [J].
Abdelhamid, Khaled ;
Reissenberger, Pamela ;
Piper, Diana ;
Koenig, Nicole ;
Hoelz, Bianca ;
Schlaepfer, Julia ;
Gysler, Simone ;
McCullough, Helena ;
Ramin-Wright, Sebastian ;
Gabathuler, Anna-Lena ;
Khandpur, Jahnvi ;
Meier, Milene ;
Eckstein, Jens .
DIAGNOSTICS, 2025, 15 (10)
[6]   Photoplethysmography based atrial fibrillation detection: a continually growing field [J].
Ding, Cheng ;
Xiao, Ran ;
Wang, Weijia ;
Holdsworth, Elizabeth ;
Hu, Xiao .
PHYSIOLOGICAL MEASUREMENT, 2024, 45 (04)
[7]   Detection of Atrial Fibrillation Using a Machine Learning Approach [J].
Liaqat, Sidrah ;
Dashtipour, Kia ;
Zahid, Adnan ;
Assaleh, Khaled ;
Arshad, Kamran ;
Ramzan, Naeem .
INFORMATION, 2020, 11 (12) :1-15
[8]   Atrial fibrillation detection from raw photoplethysmography waveforms: A deep learning application [J].
Aschbacher, Kirstin ;
Yilmaz, Defne ;
Kerem, Yaniv ;
Crawford, Stuart ;
Benaron, David ;
Liu, Jiaqi ;
Eaton, Meghan ;
Tison, Geoffrey H. ;
Olgin, Jeffrey E. ;
Li, Yihan ;
Marcus, Gregory M. .
HEART RHYTHM O2, 2020, 1 (01) :3-9
[9]   Morning Anxiety Detection Through Smartphone-Based Photoplethysmography Signals Analysis Using Machine Learning Methods [J].
Sistaninezhad, Masoud ;
Jafarizadeh, Ali ;
Rajebi, Saman ;
Pedrammehr, Siannak ;
Alizadehsani, Roohallah ;
Gorriz, Juan M. .
ARTIFICIAL INTELLIGENCE FOR NEUROSCIENCE AND EMOTIONAL SYSTEMS, PT I, IWINAC 2024, 2024, 14674 :3-13
[10]   Atrial fibrillation monitoring with wrist-worn photoplethysmography-based wearables: State-of-the-art review [J].
Eerikainen, Linda M. ;
Bonomi, Alberto G. ;
Dekker, Lukas R. C. ;
Vullings, Rik ;
Aarts, Ronald M. .
CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2020, 1 (01) :45-51