Experimental comparison of photoplethysmography-based atrial fibrillation detection using simple machine learning methods

被引:1
|
作者
Bus, Szymon [1 ]
Jedrzejewski, Konrad [1 ]
Krauze, Tomasz [2 ]
Guzik, Przemyslaw [2 ]
机构
[1] Warsaw Univ Technol, Fac Elect & Informat Technol, Inst Elect Syst, Nowowiejska 15-19, PL-00665 Warsaw, Poland
[2] Poznan Univ Med Sci, Dept Cardiol Intens Therapy & Internal Dis, Przybyszewskiego 49, PL-60355 Poznan, Poland
来源
PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH ENERGY PHYSICS EXPERIMENTS 2020 | 2020年 / 11581卷
关键词
AFib detection; machine learning; photoplethysmography; PPG; HRV; IBI;
D O I
10.1117/12.2580594
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The results of experimental studies on application of selected simple machine learning (ML) methods for detection of atrial fibrillation (AFib) based on photoplethysmogram (PPG) are presented in the paper. The goal of the studies was to compare the performance of AFib detection using different ML algorithms in short PPG segments containing 32 consecutive cardiac cycles. Four parameters describing time series of interbeat intervals (IBI) were derived from the time domain Heart Rate Variability (HRV) and used as features for classification algorithms. Optimal values of metaparameters for all considered ML algorithms were experimentally determined. Accuracy, sensitivity, specificity and F1-score were then calculated to measure the quality of detection performance of each classification algorithm.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Photoplethysmography-Based Smart Devices for Detection of Atrial Fibrillation
    Sijercic, Adna
    Tahirovic, Elnur
    TEXAS HEART INSTITUTE JOURNAL, 2022, 49 (05)
  • [2] Performance of an automated photoplethysmography-based artificial intelligence algorithm to detect atrial fibrillation
    Mol, Daniel
    Riezebos, Robert K.
    Marquering, Henk A.
    Werner, Marije E.
    Lobban, Trudie C. A.
    de Jong, Jonas S. S. G.
    de Groot, Joris R.
    CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2020, 1 (02): : 107 - 110
  • [3] Learning From Alarms: A Robust Learning Approach for Accurate Photoplethysmography-Based Atrial Fibrillation Detection Using Eight Million Samples Labeled With Imprecise Arrhythmia Alarms
    Ding, Cheng
    Guo, Zhicheng
    Rudin, Cynthia
    Xiao, Ran
    Shah, Amit
    Do, Duc H.
    Lee, Randall J.
    Clifford, Gari
    Nahab, Fadi B.
    Hu, Xiao
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (05) : 2650 - 2661
  • [4] Photoplethysmography based atrial fibrillation detection: a continually growing field
    Ding, Cheng
    Xiao, Ran
    Wang, Weijia
    Holdsworth, Elizabeth
    Hu, Xiao
    PHYSIOLOGICAL MEASUREMENT, 2024, 45 (04)
  • [5] Detection of Atrial Fibrillation Using a Machine Learning Approach
    Liaqat, Sidrah
    Dashtipour, Kia
    Zahid, Adnan
    Assaleh, Khaled
    Arshad, Kamran
    Ramzan, Naeem
    INFORMATION, 2020, 11 (12) : 1 - 15
  • [6] Atrial fibrillation detection from raw photoplethysmography waveforms: A deep learning application
    Aschbacher, Kirstin
    Yilmaz, Defne
    Kerem, Yaniv
    Crawford, Stuart
    Benaron, David
    Liu, Jiaqi
    Eaton, Meghan
    Tison, Geoffrey H.
    Olgin, Jeffrey E.
    Li, Yihan
    Marcus, Gregory M.
    HEART RHYTHM O2, 2020, 1 (01): : 3 - 9
  • [7] Morning Anxiety Detection Through Smartphone-Based Photoplethysmography Signals Analysis Using Machine Learning Methods
    Sistaninezhad, Masoud
    Jafarizadeh, Ali
    Rajebi, Saman
    Pedrammehr, Siannak
    Alizadehsani, Roohallah
    Gorriz, Juan M.
    ARTIFICIAL INTELLIGENCE FOR NEUROSCIENCE AND EMOTIONAL SYSTEMS, PT I, IWINAC 2024, 2024, 14674 : 3 - 13
  • [8] Atrial fibrillation monitoring with wrist-worn photoplethysmography-based wearables: State-of-the-art review
    Eerikainen, Linda M.
    Bonomi, Alberto G.
    Dekker, Lukas R. C.
    Vullings, Rik
    Aarts, Ronald M.
    CARDIOVASCULAR DIGITAL HEALTH JOURNAL, 2020, 1 (01): : 45 - 51
  • [9] Accuracy of continuous photoplethysmography-based 1 min mean heart rate assessment during atrial fibrillation
    Hermans, Astrid N. L.
    Isaksen, Jonas L.
    Gawalko, Monika
    Pluymaekers, Nikki A. H. A.
    van der Velden, Rachel M. J.
    Snippe, Hilco
    Evens, Stijn
    De Witte, Glenn
    Luermans, Justin G. L. M.
    Manninger, Martin
    Lumens, Joost
    Kanters, Jorgen K.
    Linz, Dominik
    EUROPACE, 2023, 25 (03): : 835 - 844
  • [10] Short-term atrial fibrillation detection using electrocardiograms: A comparison of machine learning approaches
    Jahan, Masud Shah
    Mansourvar, Marjan
    Puthusserypady, Sadasivan
    Wiil, Uffe Kock
    Peimankar, Abdolrahman
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2022, 163