A Denoising Algorithm for CT Image Using Low-rank Sparse Coding

被引:6
作者
Lei, Yang [1 ,2 ]
Xu, Dong [3 ]
Zhou, Zhengyang [4 ]
Wang, Tonghe [1 ,2 ]
Dong, Xue [1 ,2 ]
Liu, Tian [1 ,2 ]
Dhabaan, Anees [1 ,2 ]
Curran, Walter J. [1 ,2 ]
Yang, Xiaofeng [1 ,2 ]
机构
[1] Emory Univ, Dept Radiat Oncol, Atlanta, GA 30322 USA
[2] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
[3] Zhejiang Canc Hosp, Dept Ultrasound Imaging, Hangzhou 310022, Zhejiang, Peoples R China
[4] Nanjing Univ, Dept Radiol, Nanjing Drum Tower Hosp, Affiliated Hosp,Med Sch, Nanjing 210008, Jiangsu, Peoples R China
来源
MEDICAL IMAGING 2018: IMAGE PROCESSING | 2018年 / 10574卷
基金
美国国家卫生研究院;
关键词
CT; denoising; sparse coding; NONLOCAL MEANS; CLASSIFICATION; APPROXIMATION; INTERPOLATION; MATRICES;
D O I
10.1117/12.2292890
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a denoising method of CT image based on low-rank sparse coding. The proposed method constructs an adaptive dictionary of image patches and estimates the sparse coding regularization parameters using the Bayesian interpretation. A low-rank approximation approach is used to simultaneously construct the dictionary and achieve sparse representation through clustering similar image patches. A variable-splitting scheme and a quadratic optimization are used to reconstruct CT image based on achieved sparse coefficients. We tested this denoising technology using phantom, brain and abdominal CT images. The experimental results showed that the proposed method delivers state-of-art denoising performance, both in terms of objective criteria and visual quality.
引用
收藏
页数:7
相关论文
共 41 条
[21]   Structured low-rank approximation and its applications [J].
Markovsky, Ivan .
AUTOMATICA, 2008, 44 (04) :891-909
[22]  
Nair Jyothisha J., 2014, 2014 International Conference on Communications and Signal Processing (ICCSP), P853, DOI 10.1109/ICCSP.2014.6949964
[23]   MMSE based map estimation for image denoising [J].
Om, Hari ;
Biswas, Mantosh .
OPTICS AND LASER TECHNOLOGY, 2014, 57 :252-264
[24]   A Splitting-Based Iterative Algorithm for Accelerated Statistical X-Ray CT Reconstruction [J].
Ramani, Sathish ;
Fessler, Jeffrey A. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2012, 31 (03) :677-688
[25]   Dictionaries for Sparse Representation Modeling [J].
Rubinstein, Ron ;
Bruckstein, Alfred M. ;
Elad, Michael .
PROCEEDINGS OF THE IEEE, 2010, 98 (06) :1045-1057
[26]   Exploiting the Self-Similarity in ERP Images by Nonlocal Means for Single-Trial Denoising [J].
Strauss, Daniel J. ;
Teuber, Tanja ;
Steidl, Gabriele ;
Corona-Strauss, Farah I. .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2013, 21 (04) :576-583
[27]   Curvelet based nonlocal means algorithm for image denoising [J].
Wu, Kaizhi ;
Zhang, Xuming ;
Ding, Mingyue .
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2014, 68 (01) :37-43
[28]  
Yang X., 2015, P SOC PHOTO-OPT INS, V9415, p9415Y
[29]  
Yang X., 2017, P SOC PHOTO-OPT INS, V10133
[30]   3D Transrectal Ultrasound (TRUS) Prostate Segmentation Based on Optimal Feature Learning Framework [J].
Yang, Xiaofeng ;
Rossi, Peter J. ;
Jani, Ashesh B. ;
Mao, Hui ;
Curran, Walter J. ;
Liu, Tian .
MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784