A Denoising Algorithm for CT Image Using Low-rank Sparse Coding

被引:6
作者
Lei, Yang [1 ,2 ]
Xu, Dong [3 ]
Zhou, Zhengyang [4 ]
Wang, Tonghe [1 ,2 ]
Dong, Xue [1 ,2 ]
Liu, Tian [1 ,2 ]
Dhabaan, Anees [1 ,2 ]
Curran, Walter J. [1 ,2 ]
Yang, Xiaofeng [1 ,2 ]
机构
[1] Emory Univ, Dept Radiat Oncol, Atlanta, GA 30322 USA
[2] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
[3] Zhejiang Canc Hosp, Dept Ultrasound Imaging, Hangzhou 310022, Zhejiang, Peoples R China
[4] Nanjing Univ, Dept Radiol, Nanjing Drum Tower Hosp, Affiliated Hosp,Med Sch, Nanjing 210008, Jiangsu, Peoples R China
来源
MEDICAL IMAGING 2018: IMAGE PROCESSING | 2018年 / 10574卷
基金
美国国家卫生研究院;
关键词
CT; denoising; sparse coding; NONLOCAL MEANS; CLASSIFICATION; APPROXIMATION; INTERPOLATION; MATRICES;
D O I
10.1117/12.2292890
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a denoising method of CT image based on low-rank sparse coding. The proposed method constructs an adaptive dictionary of image patches and estimates the sparse coding regularization parameters using the Bayesian interpretation. A low-rank approximation approach is used to simultaneously construct the dictionary and achieve sparse representation through clustering similar image patches. A variable-splitting scheme and a quadratic optimization are used to reconstruct CT image based on achieved sparse coefficients. We tested this denoising technology using phantom, brain and abdominal CT images. The experimental results showed that the proposed method delivers state-of-art denoising performance, both in terms of objective criteria and visual quality.
引用
收藏
页数:7
相关论文
共 41 条
[1]   Fast computation of low-rank matrix approximations [J].
Achlioptas, Dimitris ;
McSherry, Frank .
JOURNAL OF THE ACM, 2007, 54 (02)
[2]   Fast Image Recovery Using Variable Splitting and Constrained Optimization [J].
Afonso, Manya V. ;
Bioucas-Dias, Jose M. ;
Figueiredo, Mario A. T. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (09) :2345-2356
[3]   A Bayesian Hyperprior Approach for Joint Image Denoising and Interpolation, With an Application to HDR Imaging [J].
Aguerrebere, Cecilia ;
Almansa, Andres ;
Delon, Julie ;
Gousseau, Yann ;
Muse, Pablo .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2017, 3 (04) :633-646
[4]  
[Anonymous], P SPIE
[5]   Adaptive low-rank approximation of collocation matrices [J].
Bebendorf, M ;
Rjasanow, S .
COMPUTING, 2003, 70 (01) :1-24
[6]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[7]   Image Denoising with Signal Dependent Noise Using Block Matching and 3D Filtering [J].
Chen, Guangyi ;
Xie, Wenfang ;
Dai, Shuling .
ADVANCES IN NEURAL NETWORKS - ISNN 2014, 2014, 8866 :423-430
[8]  
Chen GY, 2014, LECT NOTES COMPUT SC, V8588, P398, DOI 10.1007/978-3-319-09333-8_43
[9]  
Dabov K., 2006, Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning, V6064, p606 414
[10]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095