Elucidating heterogeneity in nanoplasmonic structures using nonlinear photon localization microscopy

被引:3
作者
Bao, Wei [1 ,2 ]
McLeod, A. S. [1 ]
Cabrini, S. [1 ]
Neaton, J. B. [1 ,3 ]
Schuck, P. James [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
plasmonics; nonlinear nano-optics; plasmonic antennas; photon localization microscopy; PLASMONIC NANOSTRUCTURES; SURFACE-PLASMONS; DNA-ORIGAMI; ELECTRON-MICROSCOPY; HOT-ELECTRONS; FIELD; GOLD; NANOPARTICLES; NANOANTENNAS; RESONANCE;
D O I
10.1088/2040-8978/16/11/114014
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Using nonperturbative photon localization microscopy and electromagnetic simulation, it is observed that localized modes in plasmonic devices are significantly impacted by small, and frequently time-dependent, structural variations on the nanometer scale. This is important because many such devices rely on the concentration of electromagnetic energy at the similar to 10 nm length scale and below for applications ranging from ultrasensitive molecular spectroscopy and detection, to chemical nano-imaging and plasmo-catalysis. In all devices, but particularly those based on noble metals, structural heterogeneity at these length scales is unavoidable, emphasizing the need for characterizing and understanding its effects. By exploiting the two-photon photoluminescence signal, one addresses the specific challenge of probing local electromagnetic fields inside the metal, which directly determine hot carrier generation and photoemission. It is found that heterogeneous nanoscale asperities serve as energy localization centers, and that functional impact is influenced primarily by two factors: position relative to a plasmonic mode volume, and how the asperity affects the smallest critical dimension, such as the size of a nanogap, in the structure.
引用
收藏
页数:6
相关论文
共 49 条
[1]   Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas [J].
Acuna, G. P. ;
Moeller, F. M. ;
Holzmeister, P. ;
Beater, S. ;
Lalkens, B. ;
Tinnefeld, P. .
SCIENCE, 2012, 338 (6106) :506-510
[2]   Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips [J].
Bao, Wei ;
Staffaroni, Matteo ;
Bokor, Jeffrey ;
Salmeron, Miquel B. ;
Yablonovitch, Eli ;
Cabrini, Stefano ;
Weber-Bargioni, Alexander ;
Schuck, P. James .
OPTICS EXPRESS, 2013, 21 (07) :8166-8176
[3]  
Bao W, 2012, SCIENCE, V338, P1317, DOI [10.1126/science.1227977, 10.1126/science.122797]
[4]   Photon-induced near-field electron microscopy [J].
Barwick, Brett ;
Flannigan, David J. ;
Zewail, Ahmed H. .
NATURE, 2009, 462 (7275) :902-906
[5]   Plasmonic Modes Revealed [J].
Batson, Philip E. .
SCIENCE, 2012, 335 (6064) :47-48
[6]  
Bohren CF, 2007, ABSORPTION SCATTERIN
[7]   Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging [J].
Cang, Hu ;
Labno, Anna ;
Lu, Changgui ;
Yin, Xiaobo ;
Liu, Ming ;
Gladden, Christopher ;
Liu, Yongmin ;
Zhang, Xiang .
NATURE, 2011, 469 (7330) :385-+
[8]   Gold Nanoparticle Self-Similar Chain Structure Organized by DNA Origami [J].
Ding, Baoquan ;
Deng, Zhengtao ;
Yan, Hao ;
Cabrini, Stefano ;
Zuckermann, Ronald N. ;
Bokor, Jeffrey .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (10) :3248-+
[9]   Optical excitations in electron microscopy [J].
Garcia de Abajo, F. J. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (01) :209-275
[10]  
Giugni A, 2013, NAT NANOTECHNOL, V8, P845, DOI [10.1038/NNANO.2013.207, 10.1038/nnano.2013.207]