A generalization of the Goldfeld-Sarnak estimate on Selberg's Kloosterman zeta-function

被引:16
作者
Pribitkin, WD [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
关键词
D O I
10.1515/form.2000.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the mid-60's Selberg [9] pointed out the importance of finding a good growth estimate on a Dirichlet series which today bears his name. Special values of this function, which involves generalized Kloosterman sums, appear in the Fourier coefficients of automorphic forms (of arbitrary real weight and multiplier system) on certain subgroups of SL(2, IR). In the early 80's Goldfeld & Sarnak [1] provided bounds which are valid to the right of the critical line sigma = 1/2. Here we extend their work by establishing estimates which hold in certain pole-free sets throughout the whole s-plane.
引用
收藏
页码:449 / 459
页数:11
相关论文
共 10 条
[1]   SUMS OF KLOOSTERMAN SUMS [J].
GOLDFELD, D ;
SARNAK, P .
INVENTIONES MATHEMATICAE, 1983, 71 (02) :243-250
[2]  
HEJHAL DA, 1983, SPRINGER LECT NOTES, V1001
[3]  
HEJHAL DA, 1976, SPRINGER LECT NOTES, V548
[4]  
IWANIEC H, 1995, REV MAT IBEROAMERICA
[5]  
MAASS H, 1983, LECT MODULAR FUNCTIO
[6]  
Polya G., 1978, CLASSICS MATH, V193
[7]  
PRIBITKIN W, 1995, THESIS TEMPLE U PHIL
[8]  
Sarnak P., 1990, CAMBRIDGE TRACTS MAT, V99
[9]  
Selberg A., 1965, Proc. Sympos. Pure Math., P1
[10]  
VENKOV AB, 1990, SOVIET SERIES, V51