Rapid DNA origami nanostructure detection and classification using the YOLOv5 deep convolutional neural network

被引:20
作者
Chiriboga, Matthew [1 ,2 ]
Green, Christopher M. [1 ,3 ]
Hastman, David A. [1 ,4 ]
Mathur, Divita [1 ,5 ]
Wei, Qi [2 ]
Diaz, Sebastian A. [1 ]
Medintz, Igor L. [1 ]
Veneziano, Remi [2 ]
机构
[1] US Naval Res Lab, Ctr Bio Mol Sci & Engn Code 6900, Washington, DC 20375 USA
[2] George Mason Univ, Volgenau Sch Engn, Dept Bioengn, Fairfax, VA 22030 USA
[3] CNR, Washington, DC 20001 USA
[4] Univ Maryland, A James Clark Sch Engn, Fischell Dept Bioengn, College Pk, MD 20742 USA
[5] George Mason Univ, Coll Sci, Fairfax, VA 22030 USA
基金
美国国家卫生研究院;
关键词
SHAPES;
D O I
10.1038/s41598-022-07759-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The intra-image identification of DNA structures is essential to rapid prototyping and quality control of self-assembled DNA origami scaffold systems. We postulate that the YOLO modern object detection platform commonly used for facial recognition can be applied to rapidly scour atomic force microscope (AFM) images for identifying correctly formed DNA nanostructures with high fidelity. To make this approach widely available, we use open-source software and provide a straightforward procedure for designing a tailored, intelligent identification platform which can easily be repurposed to fit arbitrary structural geometries beyond AFM images of DNA structures. Here, we describe methods to acquire and generate the necessary components to create this robust system. Beginning with DNA structure design, we detail AFM imaging, data point annotation, data augmentation, model training, and inference. To demonstrate the adaptability of this system, we assembled two distinct DNA origami architectures (triangles and breadboards) for detection in raw AFM images. Using the images acquired of each structure, we trained two separate single class object identification models unique to each architecture. By applying these models in sequence, we correctly identified 3470 structures from a total population of 3617 using images that sometimes included a third DNA origami structure as well as other impurities. Analysis was completed in under 20 s with results yielding an F1 score of 0.96 using our approach.
引用
收藏
页数:13
相关论文
共 56 条
[11]   Switchable DNA-origami nanostructures that respond to their environment and their applications [J].
Daljit Singh J.K. ;
Luu M.T. ;
Abbas A. ;
Wickham S.F.J. .
Biophysical Reviews, 2018, 10 (5) :1283-1293
[12]   Exploiting Chromophore-Protein Interactions through Linker Engineering To Tune Photoinduced Dynamics in a Biomimetic Light-Harvesting Platform [J].
Delor, Milan ;
Dai, Jing ;
Roberts, Trevor D. ;
Rogers, Julia R. ;
Hamed, Samia M. ;
Neaton, Jeffrey B. ;
Geissler, Philip L. ;
Francis, Matthew B. ;
Ginsberg, Naomi S. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (20) :6278-6287
[13]  
Denker J., 1988, P ADV NEUR INF PROC, P323
[14]   Opportunities and challenges for the clinical translation of structuredDNAassemblies as gene therapeutic delivery and vaccine vectors [J].
Dobrovoskaia, Marina A. ;
Bathe, Mark .
WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY, 2021, 13 (01)
[15]   Rapid prototyping of 3D DNA-origami shapes with caDNAno [J].
Douglas, Shawn M. ;
Marblestone, Adam H. ;
Teerapittayanon, Surat ;
Vazquez, Alejandro ;
Church, George M. ;
Shih, William M. .
NUCLEIC ACIDS RESEARCH, 2009, 37 (15) :5001-5006
[16]   Self-assembly of DNA into nanoscale three-dimensional shapes [J].
Douglas, Shawn M. ;
Dietz, Hendrik ;
Liedl, Tim ;
Hoegberg, Bjoern ;
Graf, Franziska ;
Shih, William M. .
NATURE, 2009, 459 (7245) :414-418
[17]   Computer vision algorithms and hardware implementations: A survey [J].
Feng, Xin ;
Jiang, Youni ;
Yang, Xuejiao ;
Du, Ming ;
Li, Xin .
INTEGRATION-THE VLSI JOURNAL, 2019, 69 :309-320
[18]   Rich feature hierarchies for accurate object detection and semantic segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :580-587
[19]   Correlative Super-Resolution and Atomic Force Microscopy of DNA Nanostructures and Characterization of Addressable Site Defects [J].
Green, Christopher M. ;
Hughes, William L. ;
Graugnard, Elton ;
Kuang, Wan .
ACS NANO, 2021, 15 (07) :11597-11606
[20]   Metrology of DNA arrays by super-resolution microscopy [J].
Green, Christopher M. ;
Schutt, Kelly ;
Morris, Noah ;
Zadegan, Reza M. ;
Hughes, William L. ;
Kuang, Wan ;
Graugnard, Elton .
NANOSCALE, 2017, 9 (29) :10205-10211