A numerical approach for solving an extended Fisher-Kolomogrov-Petrovskii-Piskunov equation

被引:21
作者
Khuri, S. A. [1 ]
Sayfy, A. [1 ]
机构
[1] Amer Univ Sharjah, Dept Math & Stat, Sharjah, U Arab Emirates
关键词
Fisher-Kolomogrov-Petrovskii-Piskunov equation; Finite differences; B-spline collocation; Integro-differential equation; Composite weighted trapezoidal rule;
D O I
10.1016/j.cam.2009.09.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper a numerical method, based on finite differences and spline collocation, is presented for the numerical solution of a generalized Fisher integro-differential equation. A composite weighted trapezoidal rule is manipulated to handle the numerical integrations which results in a closed-form difference scheme. A number of test examples are solved to assess the accuracy of the method. The numerical solutions obtained, indicate that the approach is reliable and yields results compatible with the exact solutions and consistent with other existing numerical methods. Convergence and stability of the scheme have also been discussed. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:2081 / 2089
页数:9
相关论文
共 10 条
[1]  
Araújo A, 2006, J COMPUT MATH, V24, P91
[2]   On the stability of a class of splitting methods for integro-differential equations [J].
Araujo, A. ;
Branco, J. R. ;
Ferreira, J. A. .
APPLIED NUMERICAL MATHEMATICS, 2009, 59 (3-4) :436-453
[3]  
Araujo A., 2005, Appl. Anal, V84, P1231
[4]   Application of cubic B-spline finite element technique to the thermistor problem [J].
Bahadir, AR .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 149 (02) :379-387
[5]   Integro-differential models for percutaneous drug absorption [J].
Barbeiro, S. ;
Ferreira, J. A. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (04) :451-467
[6]   Numerical methods for the generalized Fisher-Kolmogorov-Petrovskii-Piskunov equation [J].
Branco, J. R. ;
Ferreira, J. A. ;
de Oliveira, P. .
APPLIED NUMERICAL MATHEMATICS, 2007, 57 (01) :89-102
[7]   The numerical solution of third-order boundary-value problems with fourth-degree B-spline functions [J].
Caglar, HN ;
Caglar, SH ;
Twizell, EH .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1999, 71 (03) :373-381
[8]   The numerical solution of fifth-order boundary value problems with sixth-degree B-spline functions [J].
Çaglar, HN ;
Çaglar, SH ;
Twizell, EH .
APPLIED MATHEMATICS LETTERS, 1999, 12 (05) :25-30
[9]  
DEEBA E, 1999, WILEY ENCY ELECT ELE, V14, P562