The Euler characteristic and topological phase transitions in complex systems

被引:3
|
作者
de Amorim Filho, Edgar C. [1 ]
Moreira, Rodrigo A. [2 ]
Santos, Fernando A. N. [3 ,4 ,5 ]
机构
[1] Univ Fed Rural Pernambuco, Dept Matemat, BR-52171900 Recife, PE, Brazil
[2] Polish Acad Sci, Inst Fundamental Technol Res, Div Modelling Biol & Med PMBM, Pawinskiego 5B, PL-02106 Warsaw, Poland
[3] Vrije Univ Amsterdam, Dept Anat & Neurosci, Amsterdam UMC, De Boelelaan 1117, Amsterdam, Netherlands
[4] Univ Amsterdam, Inst Adv Studies, Oude Turfmarkt 147, NL-1012 GC Amsterdam, Netherlands
[5] Univ Fed Pernambuco, Dept Matemat, BR-50670901 Recife, PE, Brazil
来源
JOURNAL OF PHYSICS-COMPLEXITY | 2022年 / 3卷 / 02期
关键词
complex systems; Euler characteristic; topological phase transition; percolation; functional brain networks; neuroscience; PERSISTENT HOMOLOGY; LYAPUNOV EXPONENTS; ANOMALY DETECTION; GENE-EXPRESSION; NETWORKS; PERCOLATION; DYNAMICS; GEOMETRY; V3;
D O I
10.1088/2632-072X/ac664c
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we use methods and concepts of applied algebraic topology to comprehensively explore the recent idea of topological phase transitions (TPTs) in complex systems. TPTs are characterized by the emergence of nontrivial homology groups as a function of a threshold parameter. Under certain conditions, one can identify TPTs via the zeros of the Euler characteristic or by singularities of the Euler entropy. Recent works provide strong evidence that TPTs can be interpreted as the intrinsic fingerprint of a complex network. This work illustrates this possibility by investigating various networks from a topological perspective. We first review the concept of TPTs in brain networks and discuss it in the context of high-order interactions in complex systems. We then investigate TPTs in protein-protein interaction networks using methods of topological data analysis for two variants of the duplication-divergence model. We compare our theoretical and computational results to experimental data freely available for gene co-expression networks of S. cerevisiae, also known as baker's yeast, as well as of the nematode C. elegans. Supporting our theoretical expectations, we can detect TPTs in both networks obtained according to different similarity measures. We then perform numerical simulations of TPTs in four classical network models: the Erdos-Renyi, the Watts-Strogatz, the random geometric, and the Barabasi-Albert models. Finally, we discuss the relevance of these insights for network science. Given the universality and wide use of those network models across disciplines, our work indicates that TPTs permeate a wide range of theoretical and empirical networks, offering promising avenues for further research.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Topological phase transitions in the gauged BPS baby Skyrme model
    Adam, C.
    Naya, C.
    Romanczukiewicz, T.
    Sanchez-Guillen, J.
    Wereszczynski, A.
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (05):
  • [32] A New Algorithm to Study the Critical Behavior of Topological Phase Transitions
    B. V. Costa
    L. A. S. Mól
    J. C. S. Rocha
    Brazilian Journal of Physics, 2019, 49 : 271 - 276
  • [33] Symmetry-dependent topological phase transitions in PbTe layers
    Bassanezi, Daniely
    Wrasse, Ernesto Osvaldo
    Schmidt, Tome M.
    MATERIALS RESEARCH EXPRESS, 2018, 5 (01):
  • [34] Euler characteristic of a complete intersection
    Cynk, Slawomir
    COMPLEX AND DIFFERENTIAL GEOMETRY, 2011, 8 : 99 - 114
  • [35] The Euler characteristic of Out(Fn)
    Borinsky, Michael
    Vogtmann, Karen
    COMMENTARII MATHEMATICI HELVETICI, 2020, 95 (04) : 703 - 748
  • [36] DEGREE FORMULA FOR THE EULER CHARACTERISTIC
    Haution, Olivier
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2013, 141 (06) : 1863 - 1869
  • [37] Permeability of Porous Materials Determined from the Euler Characteristic
    Scholz, Christian
    Wirner, Frank
    Goetz, Jan
    Ruede, Ulrich
    Schroeder-Turk, Gerd E.
    Mecke, Klaus
    Bechinger, Clemens
    PHYSICAL REVIEW LETTERS, 2012, 109 (26)
  • [38] A notion of Euler characteristic for fractals
    Llorente, Marta
    Winter, Steffen
    MATHEMATISCHE NACHRICHTEN, 2007, 280 (1-2) : 152 - 170
  • [39] Bott functions and the euler characteristic
    O. P. Bondar’
    Ukrainian Mathematical Journal, 1999, 51 (10) : 1615 - 1616
  • [40] Euler characteristic of Fredholm quasicomplexes
    N. N. Tarkhanov
    Functional Analysis and Its Applications, 2007, 41 : 318 - 322