The Euler characteristic and topological phase transitions in complex systems

被引:3
|
作者
de Amorim Filho, Edgar C. [1 ]
Moreira, Rodrigo A. [2 ]
Santos, Fernando A. N. [3 ,4 ,5 ]
机构
[1] Univ Fed Rural Pernambuco, Dept Matemat, BR-52171900 Recife, PE, Brazil
[2] Polish Acad Sci, Inst Fundamental Technol Res, Div Modelling Biol & Med PMBM, Pawinskiego 5B, PL-02106 Warsaw, Poland
[3] Vrije Univ Amsterdam, Dept Anat & Neurosci, Amsterdam UMC, De Boelelaan 1117, Amsterdam, Netherlands
[4] Univ Amsterdam, Inst Adv Studies, Oude Turfmarkt 147, NL-1012 GC Amsterdam, Netherlands
[5] Univ Fed Pernambuco, Dept Matemat, BR-50670901 Recife, PE, Brazil
来源
JOURNAL OF PHYSICS-COMPLEXITY | 2022年 / 3卷 / 02期
关键词
complex systems; Euler characteristic; topological phase transition; percolation; functional brain networks; neuroscience; PERSISTENT HOMOLOGY; LYAPUNOV EXPONENTS; ANOMALY DETECTION; GENE-EXPRESSION; NETWORKS; PERCOLATION; DYNAMICS; GEOMETRY; V3;
D O I
10.1088/2632-072X/ac664c
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we use methods and concepts of applied algebraic topology to comprehensively explore the recent idea of topological phase transitions (TPTs) in complex systems. TPTs are characterized by the emergence of nontrivial homology groups as a function of a threshold parameter. Under certain conditions, one can identify TPTs via the zeros of the Euler characteristic or by singularities of the Euler entropy. Recent works provide strong evidence that TPTs can be interpreted as the intrinsic fingerprint of a complex network. This work illustrates this possibility by investigating various networks from a topological perspective. We first review the concept of TPTs in brain networks and discuss it in the context of high-order interactions in complex systems. We then investigate TPTs in protein-protein interaction networks using methods of topological data analysis for two variants of the duplication-divergence model. We compare our theoretical and computational results to experimental data freely available for gene co-expression networks of S. cerevisiae, also known as baker's yeast, as well as of the nematode C. elegans. Supporting our theoretical expectations, we can detect TPTs in both networks obtained according to different similarity measures. We then perform numerical simulations of TPTs in four classical network models: the Erdos-Renyi, the Watts-Strogatz, the random geometric, and the Barabasi-Albert models. Finally, we discuss the relevance of these insights for network science. Given the universality and wide use of those network models across disciplines, our work indicates that TPTs permeate a wide range of theoretical and empirical networks, offering promising avenues for further research.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Disorder-induced topological quantum phase transitions in multigap Euler semimetals
    Jankowski, Wojciech J.
    Noormandipour, Mohammadreza
    Bouhon, Adrien
    Slager, Robert-Jan
    PHYSICAL REVIEW B, 2024, 110 (06)
  • [2] Euler characteristic and topological phase transition of NUT-Kerr-Newman black hole
    Yue, Jing-Hua
    Yang, Guo-Hong
    Tian, Li-Jun
    Zhu, Shu
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 49 (04) : 941 - 944
  • [3] Euler Characteristic and Topological Phase Transition of NUT-Kerr-Newman Black Hole
    YUE Jing-Hua YANG Guo-Hong TIAN Li-Jun ZHU Shu Department of Physics
    Communications in Theoretical Physics, 2008, 49 (04) : 941 - 944
  • [4] Euler characteristic as a structural invariant of the phase diagrams of multicomponent multiphase systems
    A. V. Frolkova
    L. A. Serafimov
    G. A. Semin
    Theoretical Foundations of Chemical Engineering, 2014, 48 : 158 - 166
  • [5] TOPOLOGICAL INVARIANCE OF THE COMBINATORIAL EULER CHARACTERISTIC OF TAME SPACES
    Beke, Tibor
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2011, 13 (02) : 165 - 174
  • [6] Additivity for the parametrized topological Euler characteristic and Reidemeister torsion
    Badzioch, Bernard
    Dorabiala, Wojciech
    K-THEORY, 2007, 38 (01): : 1 - 22
  • [7] Phase transitions and overlapping modules in complex networks
    Vicsek, Tamas
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 378 (01) : 20 - 32
  • [8] A topological proof of the modified Euler characteristic based on the orbifold concept
    Naskrecki, Bartosz
    Dauter, Zbigniew
    Jaskolski, Mariusz
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : 317 - 326
  • [9] Topological theory of phase transitions
    Gori, Matteo
    Franzosi, Roberto
    Pettini, Giulio
    Pettini, Marco
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (37)
  • [10] Understanding flow features in drying droplets via Euler characteristic surfaces-A topological tool
    Roy, A.
    Haque, R. A., I
    Mitra, A. J.
    Choudhury, M. Dutta
    Tarafdar, S.
    Dutta, T.
    PHYSICS OF FLUIDS, 2020, 32 (12)