Supplemental heating of conventional Inertial Confinement Fusion

被引:0
|
作者
Thomas, B. R. [1 ]
Hughes, S. J. [1 ]
Garbett, W. J. [1 ]
Sircombe, N. J. [1 ]
机构
[1] AWE Plc, Reading RG7 4PR, Berks, England
来源
8TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA 2013) | 2016年 / 688卷
关键词
IGNITION; PHYSICS;
D O I
10.1088/1742-6596/688/1/012034
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We report a new ICF scheme whereby a capsule is imploded to near ignition conditions and subsequently flooded with hot electrons generated from a short-pulse laser plasma interaction so as to heat the whole assembly by a few hundred eV. The cold dense shell pressure is increased by a larger factor than that of the hot spot at the capsule core, so that further heating and compression of the hot spot occurs. We suggest it may be possible to drive the capsule to ignition by the pressure augmentation supplied by this extra deposition of energy.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Data-driven prediction of scaling and ignition of inertial confinement fusion experiments
    Gaffney, Jim A.
    Humbird, Kelli
    Kritcher, Andrea
    Kruse, Michael
    Kur, Eugene
    Kustowski, Bogdan
    Nora, Ryan
    Spears, Brian
    PHYSICS OF PLASMAS, 2024, 31 (09)
  • [42] Inertial confinement fusion for energy: overview of the ongoing experimental, theoretical and numerical studies
    Jacquemot, S.
    NUCLEAR FUSION, 2017, 57 (10)
  • [43] Theory and measurements of convective Raman side scatter in inertial confinement fusion experiments
    Michel, P.
    Rosenberg, M. J.
    Seka, W.
    Solodov, A. A.
    Short, R. W.
    Chapman, T.
    Goyon, C.
    Lemos, N.
    Hohenberger, M.
    Moody, J. D.
    Regan, S. P.
    Myatt, J. F.
    PHYSICAL REVIEW E, 2019, 99 (03)
  • [44] A new ignition hohlraum design for indirect-drive inertial confinement fusion
    李欣
    吴畅书
    戴振生
    郑无敌
    谷建法
    古培俊
    邹士阳
    刘杰
    朱少平
    Chinese Physics B, 2016, (08) : 260 - 264
  • [45] Kinetic mix mechanisms in shock-driven inertial confinement fusion implosions
    Rinderknecht, H. G.
    Sio, H.
    Li, C. K.
    Hoffman, N.
    Zylstra, A. B.
    Rosenberg, M. J.
    Frenje, J. A.
    Johnson, M. Gatu
    Seguin, F. H.
    Petrasso, R. D.
    Betti, R.
    Glebov, V. Yu
    Meyerhofer, D. D.
    Sangster, T. C.
    Seka, W.
    Stoeckl, C.
    Kagan, G.
    Molvig, K.
    Bellei, C.
    Amendt, P.
    Landen, O.
    Rygg, J. R.
    Smalyuk, V. A.
    Wilks, S.
    Greenwood, A.
    Nikroo, A.
    PHYSICS OF PLASMAS, 2014, 21 (05)
  • [46] Reduced mixing in inertial confinement fusion with early-time interface acceleration
    Weber, C. R.
    Clark, D. S.
    Casey, D. T.
    Hall, G. N.
    Jones, O.
    Landen, O.
    Pak, A.
    Smalyuk, V. A.
    PHYSICAL REVIEW E, 2023, 108 (02)
  • [47] Investigation of various methods for wall loss reduction in Inertial Confinement Fusion hohlraums
    Mishra, Gaurav
    Ghosh, Karabi
    HIGH ENERGY DENSITY PHYSICS, 2019, 33
  • [48] Novel Target Designs to Mitigate Hydrodynamic Instabilities Growth in Inertial Confinement Fusion
    Qiao, Xiumei
    Lan, Ke
    PHYSICAL REVIEW LETTERS, 2021, 126 (18)
  • [49] Application of High Energy Protons in Inertial Confinement Fusion by Using the Fast Ignitor Concept for DT Fusion
    S. N. Hosseini Motlagh
    Sh. S. Mohamadi
    R. Shamsi
    Journal of Fusion Energy, 2008, 27 : 154 - 160
  • [50] Application of high energy protons in inertial confinement fusion by using the fast ignitor concept for DT fusion
    Motlagh, S. N. Hosseini
    Mohamadi, Sh. S.
    Shamsi, R.
    JOURNAL OF FUSION ENERGY, 2008, 27 (03) : 154 - 160