Piecewise linear feedback systems with arbitrary number of limit cycles

被引:17
作者
Llibre, J [1 ]
Ponce, E
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Spain
[2] ES Ingenieros, Dept Matemat Aplicada 2, Seville 41092, Spain
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2003年 / 13卷 / 04期
关键词
nonlinear oscillations; limit cycles; averaging method;
D O I
10.1142/S0218127403007047
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given an arbitrary positive integer n, it is shown that there exist planar piecewise linear differential systems with at least n limit cycles.
引用
收藏
页码:895 / 904
页数:10
相关论文
共 11 条
[1]  
[Anonymous], 1979, TABLE INTEGRALS SERI
[2]   BIFURCATION OF LIMIT-CYCLES FROM CENTERS AND SEPARATRIX CYCLES OF PLANAR ANALYTIC SYSTEMS [J].
BLOWS, TR ;
PERKO, LM .
SIAM REVIEW, 1994, 36 (03) :341-376
[3]   Bifurcation sets of continuous piecewise linear systems with two zones [J].
Freire, E ;
Ponce, E ;
Rodrigo, F ;
Torres, F .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (11) :2073-2097
[4]   Bifurcation sets of symmetrical continuous piecewise linear systems with three zones [J].
Freire, E ;
Ponce, E ;
Rodrigo, F ;
Torres, F .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08) :1675-1702
[5]  
Guckenheimer J, 1986, NONLINEAR OSCILLATIO
[6]   Phase portraits of planar control systems [J].
Llibre, J ;
Sotomayor, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 27 (10) :1177-1197
[7]   Bifurcation of a periodic orbit from infinity in planar piecewise linear vector fields [J].
Llibre, J ;
Ponce, E .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 36 (05) :623-653
[8]  
LLIBRE J, IN PRESS NONLIN ANAL
[9]  
Teruel A.E., 2000, THESIS U AUTONOMA BA
[10]  
Verhulst F., 1991, NONLINEAR DIFFERENTI