Noise tolerance of linear vs non-linear LiDAR based ego-motion drift correction methods

被引:0
作者
Cobarzan, Corvin-Petrut [1 ]
Golban, Catalin-Cosmin [1 ]
Nedevschi, Sergiu [2 ]
机构
[1] Tech Univ Cluj Napoca, Dept Comp Sci, Cluj Napoca, Romania
[2] Tech Univ Cluj Napoca, Image Proc & Pattern Recognit Grp, Cluj Napoca, Romania
来源
2022 IEEE 18TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTER COMMUNICATION AND PROCESSING, ICCP | 2022年
关键词
visual odometry; visual odometry correction; drift correction; LiDAR odometry; noise tolerance; ODOMETRY; ROBUST;
D O I
10.1109/ICCP56966.2022.10053981
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We have previously proposed a linear approach for reducing the global drift of a video-based frame-to-frame trajectory estimation method by correcting it at selected points in time based on the alignment of past and current 3D LiDAR measurements (see [7]). In this paper we assess the tolerance to noise of a series of methods derived from the one previously proposed, this time using both linear and non-linear optimization methods to calculate the correction transform. We generate synthetic datasets with various noise pollution levels and assess the performance of each method under investigation in recovering artificially induced odometry estimation errors.
引用
收藏
页码:183 / 188
页数:6
相关论文
共 26 条
[1]  
Agrawal M, 2006, INT C PATT RECOG, P1063
[2]  
[Anonymous], 2011, IAPR C MACH VIS APPL
[3]   Review of visual odometry: types, approaches, challenges, and applications [J].
Aqel, Mohammad O. A. ;
Marhaban, Mohammad H. ;
Saripan, M. Iqbal ;
Ismail, Napsiah Bt. .
SPRINGERPLUS, 2016, 5
[4]   Visual Odometry by Multi-frame Feature Integration [J].
Badino, Hernan ;
Yamamoto, Akihiro ;
Kanade, Takeo .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2013, :222-229
[5]  
Christophe Cudel, 2019, REV DATASET AVAILABL, P77, DOI [10.1117/12.2521750, DOI 10.1117/12.2521750]
[6]  
Cvisic I, 2015, 2015 EUROPEAN CONFERENCE ON MOBILE ROBOTS (ECMR)
[7]   Visual Odometry Part II: Matching, Robustness, Optimization, and Applications [J].
Fraundorfer, Friedrich ;
Scaramuzza, Davide .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2012, 19 (02) :78-90
[8]  
Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
[9]  
Golban C., 2021, 2021 IEEE 17 INT C I
[10]  
Golban C, 2020, INT C INTELL COMP CO, P277, DOI [10.1109/iccp51029.2020.9266228, 10.1109/ICCP51029.2020.9266228]