Implications of Whole-Disc DSCOVR EPIC Spectral Observations for Estimating Earth's Spectral Reflectivity Based on Low-Earth-Orbiting and Geostationary Observations

被引:17
作者
Song, Wanjuan [1 ,2 ,3 ]
Knyazikhin, Yuri [1 ]
Wen, Guoyong [4 ]
Marshak, Alexander [4 ]
Mottus, Matti [5 ]
Yan, Kai [1 ,2 ,3 ]
Yang, Bin [1 ,6 ]
Xu, Baodong [1 ,7 ]
Park, Taejin [1 ]
Chen, Chi [1 ]
Zeng, Yelu [2 ,8 ]
Yan, Guangjian [2 ,3 ]
Mu, Xihan [2 ,3 ]
Myneni, Ranga B. [1 ]
机构
[1] Boston Univ, Dept Earth & Environm, Boston, MA 02215 USA
[2] Beijing Normal Univ & Inst Remote Sensing & Digit, State Key Lab Remote Sensing Sci, Beijing 100875, Peoples R China
[3] Beijing Normal Univ, Beijing Engn Res Ctr Global Land Remote Sensing P, Inst Remote Sensing Sci & Engn, Fac Geog Sci, Beijing 100875, Peoples R China
[4] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[5] VTT Tech Res Ctr Finland, Espoo 02044, Finland
[6] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Hunan, Peoples R China
[7] Huazhong Agr Univ, Macro Agr Res Inst, Coll Resource & Environm, Wuhan 430070, Hubei, Peoples R China
[8] Carnegie Inst Sci, Dept Global Ecol, Stanford, CA 94305 USA
基金
中国国家自然科学基金;
关键词
Deep Space Climate Observatory (DSCOVR); Earth Polychromatic Imaging Camera (EPIC); spectral reflectance; MISR; MODIS; GOES-East; LEAF-AREA INDEX; SURFACE REFLECTIVITY; RADIATION BUDGET; SOIL-MOISTURE; CANOPY; MODEL; INVARIANTS; CLOUDS; SYSTEM;
D O I
10.3390/rs10101594
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Earth's reflectivity is among the key parameters of climate research. National Aeronautics and Space Administration (NASA)'s Earth Polychromatic Imaging Camera (EPIC) onboard National Oceanic and Atmospheric Administration (NOAA)'s Deep Space Climate Observatory (DSCOVR) spacecraft provides spectral reflectance of the entire sunlit Earth in the near backscattering direction every 65 to 110 min. Unlike EPIC, sensors onboard the Earth Orbiting Satellites (EOS) sample reflectance over swaths at a specific local solar time (LST) or over a fixed area. Such intrinsic sampling limits result in an apparent Earth's reflectivity. We generated spectral reflectance over sampling areas using EPIC data. The difference between the EPIC and EOS estimates is an uncertainty in Earth's reflectivity. We developed an Earth Reflector Type Index (ERTI) to discriminate between major Earth atmosphere components: clouds, cloud-free ocean, bare and vegetated land. Temporal variations in Earth's reflectivity are mostly determined by clouds. The sampling area of EOS sensors may not be sufficient to represent cloud variability, resulting in biased estimates. Taking EPIC reflectivity as a reference, low-earth-orbiting-measurements at the sensor-specific LST tend to overestimate EPIC values by 0.8% to 8%. Biases in geostationary orbiting approximations due to a limited sampling area are between -0.7% and 12%. Analyses of ERTI-based Earth component reflectivity indicate that the disagreement between EPIC and EOS estimates depends on the sampling area, observation time and vary between -10% and 23%.
引用
收藏
页数:23
相关论文
共 47 条
[1]   ABOUT THE SOIL LINE CONCEPT IN REMOTE-SENSING [J].
BARET, F ;
JACQUEMOUD, S ;
HANOCQ, JF .
ADVANCES IN SPACE RESEARCH-SERIES, 1993, 13 (05) :281-284
[2]   MOISTURE EFFECTS ON VISIBLE SPECTRAL CHARACTERISTICS OF LATERITIC SOILS [J].
BEDIDI, A ;
CERVELLE, B ;
MADEIRA, J ;
POUGET, M .
SOIL SCIENCE, 1992, 153 (02) :129-141
[3]   Sunlight mediated seasonality in canopy structure and photosynthetic activity of Amazonian rainforests [J].
Bi, Jian ;
Knyazikhin, Yuri ;
Choi, Sungho ;
Park, Taejin ;
Barichivich, Jonathan ;
Ciais, Philippe ;
Fu, Rong ;
Ganguly, Sangram ;
Hall, Forrest ;
Hilker, Thomas ;
Huete, Alfredo ;
Jones, Matthew ;
Kimball, John ;
Lyapustin, Alexei I. ;
Mottus, Matti ;
Nemani, Ramakrishna R. ;
Piao, Shilong ;
Poulter, Benjamin ;
Saleska, Scott R. ;
Saatchi, Sassan S. ;
Xu, Liang ;
Zhou, Liming ;
Myneni, Ranga B. .
ENVIRONMENTAL RESEARCH LETTERS, 2015, 10 (06)
[4]   Mapping global land surface albedo from NOAA AVHRR [J].
Csiszar, I ;
Gutman, G .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D6) :6215-6228
[5]   REFLECTIVITY OF EARTHS SURFACE AND CLOUDS IN ULTRAVIOLET FROM SATELLITE-OBSERVATIONS [J].
ECK, TF ;
BHARTIA, PK ;
HWANG, PH ;
STOWE, LL .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1987, 92 (D4) :4287-4296
[6]   PROSPECT-4 and 5:: Advances in the leaf optical properties model separating photosynthetic pigments [J].
Feret, Jean-Baptiste ;
Francois, Christophe ;
Asner, Gregory P. ;
Gitelson, Anatoly A. ;
Martin, Roberta E. ;
Bidel, Luc P. R. ;
Ustin, Susan L. ;
le Maire, Guerric ;
Jacquemoud, Stephane .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (06) :3030-3043
[7]  
Geogdzhayev I. V., 2018, ATMOS MEAS TECH, DOI [10.5194/amt-2017-222, DOI 10.5194/AMT-2017-222]
[8]   Building a global hotspot ecology with Triana data [J].
Gerstl, SAW .
REMOTE SENSING FOR EARTH SCIENCE, OCEAN, AND SEA ICE APPLICATIONS, 1999, 3868 :184-194
[9]   Synoptic ozone, cloud reflectivity, and erythemal irradiance from sunrise to sunset for the whole earth as viewed by the DSCOVR spacecraft from the earth-sun Lagrange 1 orbit [J].
Herman, Jay ;
Huang, Liang ;
McPeters, Richard ;
Ziemke, Jerry ;
Cede, Alexander ;
Blank, Karin .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2018, 11 (01) :177-194
[10]   Stochastic transport theory for investigating the three-dimensional canopy structure from space measurements [J].
Huang, Dong ;
Knyazikhin, Yuri ;
Wang, Weile ;
Deering, Donald W. ;
Stenberg, Pauline ;
Shabanov, Nikolay ;
Tan, Bin ;
Myneni, Ranga B. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (01) :35-50