An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data

被引:22
作者
Ke, Peng-fei [1 ,3 ,5 ]
Xiong, Dong-sheng [1 ,3 ,5 ]
Li, Jia-hui [1 ,3 ,5 ]
Pan, Zhi-lin [1 ,3 ,5 ]
Zhou, Jing [1 ,3 ,5 ]
Li, Shi-jia [1 ,3 ,5 ]
Song, Jie [1 ,3 ,5 ]
Chen, Xiao-yi [1 ,3 ,5 ]
Li, Gui-xiang [4 ,7 ]
Chen, Jun [4 ,7 ]
Li, Xiao-bo [8 ]
Ning, Yu-ping [3 ]
Wu, Feng-chun [2 ,3 ]
Wu, Kai [1 ,2 ,3 ,4 ,5 ,6 ,7 ,9 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Dept Biomed Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangzhou Med Univ, Guangzhou Huiai Hosp, Affiliated Brain Hosp, Guangzhou 510370, Guangdong, Peoples R China
[3] Guangdong Engn Technol Res Ctr Translat Med Menta, Guangzhou 510370, Peoples R China
[4] Guangdong Engn Technol Res Ctr Diag & Rehabil Dem, Guangzhou 510500, Peoples R China
[5] South China Univ Technol, Natl Engn Res Ctr Tissue Restorat & Reconstruct, Guangzhou 510006, Peoples R China
[6] South China Univ Technol, Key Lab Biomed Engn Guangdong Prov, Guangzhou 510006, Peoples R China
[7] Natl Engn Res Ctr Healthcare Devices, Guangzhou 510500, Peoples R China
[8] New Jersey Inst Technol, Dept Biomed Engn, Newark, NJ 07102 USA
[9] Tohoku Univ, Inst Dev Aging & Canc, Dept Nucl Med & Radiol, Sendai, Miyagi 9808575, Japan
基金
中国国家自然科学基金;
关键词
GUT MICROBIOTA; LIPID-PEROXIDATION; DRUG-NAIVE; HIGH-RISK; EEG; BRAIN; CLASSIFICATION; ABNORMALITIES; METAANALYSIS; 1ST-EPISODE;
D O I
10.1038/s41598-021-94007-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Finding effective and objective biomarkers to inform the diagnosis of schizophrenia is of great importance yet remains challenging. Relatively little work has been conducted on multi-biological data for the diagnosis of schizophrenia. In this cross-sectional study, we extracted multiple features from three types of biological data, including gut microbiota data, blood data, and electroencephalogram data. Then, an integrated framework of machine learning consisting of five classifiers, three feature selection algorithms, and four cross validation methods was used to discriminate patients with schizophrenia from healthy controls. Our results show that the support vector machine classifier without feature selection using the input features of multi-biological data achieved the best performance, with an accuracy of 91.7% and an AUC of 96.5% (p<0.05). These results indicate that multi-biological data showed better discriminative capacity for patients with schizophrenia than single biological data. The top 5% discriminative features selected from the optimal model include the gut microbiota features (Lactobacillus, Haemophilus, and Prevotella), the blood features (superoxide dismutase level, monocyte-lymphocyte ratio, and neutrophil count), and the electroencephalogram features (nodal local efficiency, nodal efficiency, and nodal shortest path length in the temporal and frontal-parietal brain areas). The proposed integrated framework may be helpful for understanding the pathophysiology of schizophrenia and developing biomarkers for schizophrenia using multi-biological data.
引用
收藏
页数:11
相关论文
共 63 条
  • [41] Probiotic Lactobacillus Strains Stimulate the Inflammatory Response and Activate Human Macrophages
    Rocha-Ramirez, L. M.
    Perez-Solano, R. A.
    Castanon-Alonso, S. L.
    Moreno Guerrero, S. S.
    Ramirez Pacheco, A.
    Garcia Garibay, M.
    Eslava, C.
    [J]. JOURNAL OF IMMUNOLOGY RESEARCH, 2017, 2017
  • [42] Complex network measures of brain connectivity: Uses and interpretations
    Rubinov, Mikail
    Sporns, Olaf
    [J]. NEUROIMAGE, 2010, 52 (03) : 1059 - 1069
  • [43] Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease
    Sampson, Timothy R.
    Debelius, Justine W.
    Thron, Taren
    Janssen, Stefan
    Shastri, Gauri G.
    Ilhan, Zehra Esra
    Challis, Collin
    Schretter, Catherine E.
    Rocha, Sandra
    Gradinaru, Viviana
    Chesselet, Marie-Francoise
    Keshavarzian, Ali
    Shannon, Kathleen M.
    Krajmalnik-Brown, Rosa
    Wittung-Stafshede, Pernilla
    Knight, Rob
    Mazmanian, Sarkis K.
    [J]. CELL, 2016, 167 (06) : 1469 - +
  • [44] Analysis of microbiota in first episode psychosis identifies preliminary associations with symptom severity and treatment response
    Schwarz, Emanuel
    Maukonen, Johanna
    Hyytiainen, Tiina
    Kieseppa, Tuula
    Oresic, Matej
    Sabunciyan, Sarven
    Mantere, Outi
    Saarela, Maria
    Yolken, Robert
    Suvisaari, Jaana
    [J]. SCHIZOPHRENIA RESEARCH, 2018, 192 : 398 - 403
  • [45] Identification of a blood-based biological signature in subjects with psychiatric disorders prior to clinical manifestation
    Schwarz, Emanuel
    Guest, Paul C.
    Rahmoune, Hassan
    Martins-de-Souza, Daniel
    Niebuhr, David W.
    Weber, Natalya S.
    Cowan, David N.
    Yolken, Robert H.
    Spain, Michael
    Barnes, Anthony
    Bahn, Sabine
    [J]. WORLD JOURNAL OF BIOLOGICAL PSYCHIATRY, 2012, 13 (08) : 627 - 632
  • [46] Analysis of gut microbiota diversity and auxiliary diagnosis as a biomarker in patients with schizophrenia: A cross-sectional study
    Shen, Yang
    Xu, Jintian
    Li, Zhiyong
    Huang, Yichen
    Yuan, Ye
    Wang, Jixiang
    Zhang, Meng
    Hu, Songnian
    Liang, Ying
    [J]. SCHIZOPHRENIA RESEARCH, 2018, 197 : 470 - 477
  • [47] Clinical and biological concomitants of resting state EEG power abnormalities in schizophrenia
    Sponheim, SR
    Clementz, BA
    Iacono, WG
    Beiser, M
    [J]. BIOLOGICAL PSYCHIATRY, 2000, 48 (11) : 1088 - 1097
  • [48] Sensitivity and specificity of select biological indices in characterizing psychotic patients and their relatives
    Sponheim, SR
    Iacono, WG
    Thuras, PD
    Nugent, SM
    Beiser, M
    [J]. SCHIZOPHRENIA RESEARCH, 2003, 63 (1-2) : 27 - 38
  • [49] Charting the landscape of priority problems in psychiatry, part 1: classification and diagnosis
    Stephan, Klaas E.
    Bach, Dominik R.
    Fletcher, Paul C.
    Flint, Jonathan
    Frank, Michael J.
    Friston, Karl J.
    Heinz, Andreas
    Huys, Quentin J. M.
    Owen, Michael J.
    Binder, Elisabeth B.
    Dayan, Peter
    Johnstone, Eve C.
    Meyer-Lindenberg, Andreas
    Montague, P. Read
    Schnyder, Ulrich
    Wang, Xiao-Jing
    Breakspear, Michael
    [J]. LANCET PSYCHIATRY, 2016, 3 (01): : 77 - 83
  • [50] Combination of resting state fMRI, DTI, and sMRI data to discriminate schizophrenia by N-way MCCA plus jICA
    Sui, Jing
    He, Hao
    Yu, Qingbao
    Chen, Jiayu
    Rogers, Jack
    Pearlson, Godfrey D.
    Mayer, Andrew
    Bustillo, Juan
    Canive, Jose
    Calhoun, Vince D.
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2013, 7