An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data

被引:22
作者
Ke, Peng-fei [1 ,3 ,5 ]
Xiong, Dong-sheng [1 ,3 ,5 ]
Li, Jia-hui [1 ,3 ,5 ]
Pan, Zhi-lin [1 ,3 ,5 ]
Zhou, Jing [1 ,3 ,5 ]
Li, Shi-jia [1 ,3 ,5 ]
Song, Jie [1 ,3 ,5 ]
Chen, Xiao-yi [1 ,3 ,5 ]
Li, Gui-xiang [4 ,7 ]
Chen, Jun [4 ,7 ]
Li, Xiao-bo [8 ]
Ning, Yu-ping [3 ]
Wu, Feng-chun [2 ,3 ]
Wu, Kai [1 ,2 ,3 ,4 ,5 ,6 ,7 ,9 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Dept Biomed Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangzhou Med Univ, Guangzhou Huiai Hosp, Affiliated Brain Hosp, Guangzhou 510370, Guangdong, Peoples R China
[3] Guangdong Engn Technol Res Ctr Translat Med Menta, Guangzhou 510370, Peoples R China
[4] Guangdong Engn Technol Res Ctr Diag & Rehabil Dem, Guangzhou 510500, Peoples R China
[5] South China Univ Technol, Natl Engn Res Ctr Tissue Restorat & Reconstruct, Guangzhou 510006, Peoples R China
[6] South China Univ Technol, Key Lab Biomed Engn Guangdong Prov, Guangzhou 510006, Peoples R China
[7] Natl Engn Res Ctr Healthcare Devices, Guangzhou 510500, Peoples R China
[8] New Jersey Inst Technol, Dept Biomed Engn, Newark, NJ 07102 USA
[9] Tohoku Univ, Inst Dev Aging & Canc, Dept Nucl Med & Radiol, Sendai, Miyagi 9808575, Japan
基金
中国国家自然科学基金;
关键词
GUT MICROBIOTA; LIPID-PEROXIDATION; DRUG-NAIVE; HIGH-RISK; EEG; BRAIN; CLASSIFICATION; ABNORMALITIES; METAANALYSIS; 1ST-EPISODE;
D O I
10.1038/s41598-021-94007-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Finding effective and objective biomarkers to inform the diagnosis of schizophrenia is of great importance yet remains challenging. Relatively little work has been conducted on multi-biological data for the diagnosis of schizophrenia. In this cross-sectional study, we extracted multiple features from three types of biological data, including gut microbiota data, blood data, and electroencephalogram data. Then, an integrated framework of machine learning consisting of five classifiers, three feature selection algorithms, and four cross validation methods was used to discriminate patients with schizophrenia from healthy controls. Our results show that the support vector machine classifier without feature selection using the input features of multi-biological data achieved the best performance, with an accuracy of 91.7% and an AUC of 96.5% (p<0.05). These results indicate that multi-biological data showed better discriminative capacity for patients with schizophrenia than single biological data. The top 5% discriminative features selected from the optimal model include the gut microbiota features (Lactobacillus, Haemophilus, and Prevotella), the blood features (superoxide dismutase level, monocyte-lymphocyte ratio, and neutrophil count), and the electroencephalogram features (nodal local efficiency, nodal efficiency, and nodal shortest path length in the temporal and frontal-parietal brain areas). The proposed integrated framework may be helpful for understanding the pathophysiology of schizophrenia and developing biomarkers for schizophrenia using multi-biological data.
引用
收藏
页数:11
相关论文
共 63 条
  • [31] Biomarkers for Prediction of Schizophrenia: Insights From Resting-State EEG Microstates
    Luo, Yu
    Tian, Qing
    Wang, Changming
    Zhang, Ke
    Wang, Chuanyue
    Zhang, Jicong
    [J]. IEEE ACCESS, 2020, 8 : 213078 - 213093
  • [32] Schizophrenia-An Overview
    McCutcheon, Robert A.
    Reis Marques, Tiago
    Howes, Oliver D.
    [J]. JAMA PSYCHIATRY, 2020, 77 (02) : 201 - 210
  • [33] Miller Brian J, 2014, Clin Schizophr Relat Psychoses, V7, P223, DOI 10.3371/CSRP.MICU.020813
  • [34] Meta-Analysis of Lymphocytes in Schizophrenia: Clinical Status and Antipsychotic Effects
    Miller, Brian J.
    Gassama, Bintou
    Sebastian, Dale
    Buckley, Peter
    Mellor, Andrew
    [J]. BIOLOGICAL PSYCHIATRY, 2013, 73 (10) : 993 - 999
  • [35] Meta-Analysis of Cytokine Alterations in Schizophrenia: Clinical Status and Antipsychotic Effects
    Miller, Brian J.
    Buckley, Peter
    Seabolt, Wesley
    Mellor, Andrew
    Kirkpatrick, Brian
    [J]. BIOLOGICAL PSYCHIATRY, 2011, 70 (07) : 663 - 671
  • [36] COMPUTERIZED EEG IN SCHIZOPHRENIC-PATIENTS
    MIYAUCHI, T
    TANAKA, K
    HAGIMOTO, H
    MIURA, T
    KISHIMOTO, H
    MATSUSHITA, M
    [J]. BIOLOGICAL PSYCHIATRY, 1990, 28 (06) : 488 - &
  • [37] Neuroanatomy of auditory verbal hallucinations in schizophrenia: A quantitative meta-analysis of voxel-based morphometry studies
    Modinos, Gemma
    Costafreda, Sergi G.
    van Tol, Marie-Jose
    McGuire, Philip K.
    Aleman, Andre
    Allen, Paul
    [J]. CORTEX, 2013, 49 (04) : 1046 - 1055
  • [38] A comparison of the neutrophil-lymphocyte, platelet-lymphocyte and monocyte-lymphocyte ratios in schizophrenia and bipolar disorder patients - a retrospective file review
    Ozdin, Selcuk
    Sarisoy, Gokhan
    Boke, Omer
    [J]. NORDIC JOURNAL OF PSYCHIATRY, 2017, 71 (07) : 509 - 512
  • [39] A Multi-Domain Connectome Convolutional Neural Network for Identifying Schizophrenia From EEG Connectivity Patterns
    Phang, Chun-Ren
    Noman, Fuad
    Hussain, Hadri
    Ting, Chee-Ming
    Ombao, Hernando
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2020, 24 (05) : 1333 - 1343
  • [40] Reduced antioxidant defense systems in schizophrenia and bipolar I disorder
    Raffa, Monia
    Barhoumi, Sana
    Atig, Fatma
    Fendri, Chiraz
    Kerkeni, Abdelhamid
    Mechri, Anwar
    [J]. PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2012, 39 (02) : 371 - 375