An integrated machine learning framework for a discriminative analysis of schizophrenia using multi-biological data

被引:22
作者
Ke, Peng-fei [1 ,3 ,5 ]
Xiong, Dong-sheng [1 ,3 ,5 ]
Li, Jia-hui [1 ,3 ,5 ]
Pan, Zhi-lin [1 ,3 ,5 ]
Zhou, Jing [1 ,3 ,5 ]
Li, Shi-jia [1 ,3 ,5 ]
Song, Jie [1 ,3 ,5 ]
Chen, Xiao-yi [1 ,3 ,5 ]
Li, Gui-xiang [4 ,7 ]
Chen, Jun [4 ,7 ]
Li, Xiao-bo [8 ]
Ning, Yu-ping [3 ]
Wu, Feng-chun [2 ,3 ]
Wu, Kai [1 ,2 ,3 ,4 ,5 ,6 ,7 ,9 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Dept Biomed Engn, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangzhou Med Univ, Guangzhou Huiai Hosp, Affiliated Brain Hosp, Guangzhou 510370, Guangdong, Peoples R China
[3] Guangdong Engn Technol Res Ctr Translat Med Menta, Guangzhou 510370, Peoples R China
[4] Guangdong Engn Technol Res Ctr Diag & Rehabil Dem, Guangzhou 510500, Peoples R China
[5] South China Univ Technol, Natl Engn Res Ctr Tissue Restorat & Reconstruct, Guangzhou 510006, Peoples R China
[6] South China Univ Technol, Key Lab Biomed Engn Guangdong Prov, Guangzhou 510006, Peoples R China
[7] Natl Engn Res Ctr Healthcare Devices, Guangzhou 510500, Peoples R China
[8] New Jersey Inst Technol, Dept Biomed Engn, Newark, NJ 07102 USA
[9] Tohoku Univ, Inst Dev Aging & Canc, Dept Nucl Med & Radiol, Sendai, Miyagi 9808575, Japan
基金
中国国家自然科学基金;
关键词
GUT MICROBIOTA; LIPID-PEROXIDATION; DRUG-NAIVE; HIGH-RISK; EEG; BRAIN; CLASSIFICATION; ABNORMALITIES; METAANALYSIS; 1ST-EPISODE;
D O I
10.1038/s41598-021-94007-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Finding effective and objective biomarkers to inform the diagnosis of schizophrenia is of great importance yet remains challenging. Relatively little work has been conducted on multi-biological data for the diagnosis of schizophrenia. In this cross-sectional study, we extracted multiple features from three types of biological data, including gut microbiota data, blood data, and electroencephalogram data. Then, an integrated framework of machine learning consisting of five classifiers, three feature selection algorithms, and four cross validation methods was used to discriminate patients with schizophrenia from healthy controls. Our results show that the support vector machine classifier without feature selection using the input features of multi-biological data achieved the best performance, with an accuracy of 91.7% and an AUC of 96.5% (p<0.05). These results indicate that multi-biological data showed better discriminative capacity for patients with schizophrenia than single biological data. The top 5% discriminative features selected from the optimal model include the gut microbiota features (Lactobacillus, Haemophilus, and Prevotella), the blood features (superoxide dismutase level, monocyte-lymphocyte ratio, and neutrophil count), and the electroencephalogram features (nodal local efficiency, nodal efficiency, and nodal shortest path length in the temporal and frontal-parietal brain areas). The proposed integrated framework may be helpful for understanding the pathophysiology of schizophrenia and developing biomarkers for schizophrenia using multi-biological data.
引用
收藏
页数:11
相关论文
共 63 条
  • [1] Changes in EEG spectral power on perception of neutral and emotional words in patients with schizophrenia, their relatives, and healthy subjects from the general population
    Alfimova M.V.
    Uvarova L.G.
    [J]. Neuroscience and Behavioral Physiology, 2008, 38 (5) : 533 - 540
  • [2] Looking for Alzheimer's Disease morphometric signatures using machine learning techniques
    Andres Donnelly-Kehoe, Patricio
    Orlando Pascariello, Guido
    Carlos Gomez, Juan
    [J]. JOURNAL OF NEUROSCIENCE METHODS, 2018, 302 : 24 - 34
  • [3] 25th Annual Computational Neuroscience Meeting CNS-2016, Seogwipo City, South Korea, July 2-7, 2016 Abstracts
    不详
    [J]. BMC NEUROSCIENCE, 2016, 17
  • [4] Altered antioxidant defense system in clinidcally stable patients with schizophrenia and their unaffected siblings
    Ben Othmen, Leila
    Mechri, Anwar
    Fendri, Chiraz
    Bost, Muriel
    Chazot, Guy
    Gaha, Lotfi
    Kerkeni, Abdelhamid
    [J]. PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2008, 32 (01) : 155 - 159
  • [5] The status of spectral EEG abnormality as a diagnostic test for schizophrenia
    Boutros, Nash N.
    Arfken, Cynthia
    Galderisi, Silvana
    Warrick, Joshua
    Pratt, Garrett
    Iacono, William
    [J]. SCHIZOPHRENIA RESEARCH, 2008, 99 (1-3) : 225 - 237
  • [6] Callahan BJ, 2016, NAT METHODS, V13, P581, DOI [10.1038/nmeth.3869, 10.1038/NMETH.3869]
  • [7] Applications of blood-based protein biomarker strategies in the study of psychiatric disorders
    Chan, Man K.
    Gottschalk, Michael G.
    Haenisch, Frieder
    Tomasik, Jakub
    Ruland, Tillmann
    Rahmoune, Hassan
    Guest, Paul C.
    Bahn, Sabine
    [J]. PROGRESS IN NEUROBIOLOGY, 2014, 122 : 45 - 72
  • [8] Variability in Resting State Network and Functional Network Connectivity Associated With Schizophrenia Genetic Risk: A Pilot Study
    Chen, Jiayu
    Rashid, Barnaly
    Yu, Qingbao
    Liu, Jingyu
    Lin, Dongdong
    Du, Yuhui
    Sui, Jing
    Calhoun, Vince D.
    [J]. FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [9] An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis
    Chen, Jun
    Wright, Kerry
    Davis, John M.
    Jeraldo, Patricio
    Marietta, Eric V.
    Murray, Joseph
    Nelson, Heidi
    Matteson, Eric L.
    Taneja, Veena
    [J]. GENOME MEDICINE, 2016, 8
  • [10] Chen Z., 2020, COMPUT INTEL NEUROSC, V2020, P1