SF-KCCA: Sample Factoring Induced Kernel Canonical Correlation Analysis

被引:1
作者
Zhan, Bisheng [1 ]
Ganaa, Ernest Domanaanmwi [1 ]
Qiang, Na [1 ]
Luo, Xiaozhen [1 ]
机构
[1] Jiangsu Univ, Sch Comp Sci & Commun Engn, Zhenjiang, Jiangsu, Peoples R China
来源
HUMAN CENTERED COMPUTING | 2019年 / 11956卷
基金
中国国家自然科学基金;
关键词
Sample factoring; Cosine similarity metrics; Correlation projection; CCA; KCCA; CORRELATION-ANALYSIS ALGORITHM;
D O I
10.1007/978-3-030-37429-7_59
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Canonical Correlation analysis (CCA), such as linear CCA and Kernel Canonical Correlation Analysis (KCCA) are efficient methods for dimensionality reduction (DR). In this paper, a method of sample factoring induced KCCA is proposed. Different from traditional KCCA method, sample factors are introduced to impose penalties on the sample spaces to suppress the effect of corrupt data samples. By using a sample factoring strategies: cosine similarity metrics, the relationships between data samples and the principal projections are iteratively learned in order to obtain better correlation projections. By this way, the authentic and corrupt data samples can be discriminated and the impact of the corrupt data samples can be suppressed. Extensive experiments conducted on face image datasets, such as Yale, AR, show our approach has better classification and DR performance than that of linear CCA and KCCA, especially in noisy datasets.
引用
收藏
页码:576 / 587
页数:12
相关论文
共 22 条
  • [1] Alam Ashad, 2008, 2008 11th International Conference on Computer and Information Technology (ICCIT), P399, DOI 10.1109/ICCITECHN.2008.4802966
  • [2] Arora R, 2013, INT CONF ACOUST SPEE, P7135, DOI 10.1109/ICASSP.2013.6639047
  • [3] Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection
    Belhumeur, PN
    Hespanha, JP
    Kriegman, DJ
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) : 711 - 720
  • [4] Chen GY, 2017, IEEE IMAGE PROC, P111, DOI 10.1109/ICIP.2017.8296253
  • [5] Breaking the curse of dimensionality in sparse polynomial approximation of parametric PDEs
    Chkifa, Abdellah
    Cohen, Albert
    Schwab, Christoph
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (02): : 400 - 428
  • [6] Chu D., 2013, PROC INT MULTICONF E, V2202, P322
  • [7] Dehon C, 2000, STUD CLASS DATA ANAL, P321
  • [8] Foster D.P., 2008, TR20095 TTI
  • [9] He XF, 2005, IEEE I CONF COMP VIS, P1208
  • [10] He XF, 2004, ADV NEUR IN, V16, P153