Numerical treatment of a Volterra integral equation with space maps

被引:4
作者
Annunziato, Mario [1 ]
Messina, Eleonora [2 ]
机构
[1] Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, Italy
[2] Univ Naples Federico II, Dipartimento Matemat & Applicaz, I-80126 Naples, Italy
关键词
Volterra integral equation; Space map; PIECEWISE DETERMINISTIC PROCESSES; FINITE-DIFFERENCE METHOD; COLLOCATION METHODS;
D O I
10.1016/j.apnum.2010.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider linear Volterra Integral Equations (VIES) whose solution depends on a space variable, via a map transformation. We investigate on the basic qualitative properties of this kind of equation, and introduce a numerical method based on direct quadrature along time and interpolation for space. For this method we study the convergence and we show its performances on some test examples. (C) 2010 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:809 / 815
页数:7
相关论文
共 20 条
[1]   A finite difference method for piecewise deterministic processes with memory [J].
Annunziato, M. .
MATHEMATICAL MODELLING AND ANALYSIS, 2007, 12 (02) :157-178
[2]   Non-Gaussian equilibrium distributions arising from the Langevin equation [J].
Annunziato, M .
PHYSICAL REVIEW E, 2002, 65 (02)
[3]   A Finite Difference Method for Piecewise Deterministic Processes with Memory. II [J].
Annunziato, M. .
MATHEMATICAL MODELLING AND ANALYSIS, 2009, 14 (02) :139-158
[4]  
Annunziato M, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.011107
[5]  
[Anonymous], 1993, MONOGR STAT APPL PRO, DOI DOI 10.1201/9780203748039
[6]  
BAKER C, 1977, NUMERICAL TREATMENT
[7]   Strange kinetics: conflict between density and trajectory description [J].
Bologna, M ;
Grigolini, P ;
West, BJ .
CHEMICAL PHYSICS, 2002, 284 (1-2) :115-128
[8]   ON THE NUMERICAL-SOLUTION OF NONLINEAR VOLTERRA-FREDHOLM INTEGRAL-EQUATIONS BY COLLOCATION METHODS [J].
BRUNNER, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (04) :987-1000
[9]  
BRUNNER H, 1986, CWI MONOGRAPHS, V3
[10]   Fast Runge-Kutta methods for nonlinear convolution systems of volterra integral equations [J].
Capobianco, G. ;
Conte, D. ;
Del Prete, I. ;
Russo, E. .
BIT NUMERICAL MATHEMATICS, 2007, 47 (02) :259-275