Recruitment of solid lipid nanoparticles for the delivery of CRISPR/Cas9: primary evaluation of anticancer gene editing

被引:9
作者
Akbaba, Hasan [1 ]
Erel-Akbaba, Gulsah [2 ]
Senturk, Serif [3 ,4 ]
机构
[1] Ege Univ, Dept Pharmaceut Biotechnol, Fac Pharm, TR-35100 Izmir, Turkey
[2] Izmir Katip Celebi Univ, Dept Pharmaceut Biotechnol, Fac Pharm, TR-35620 Izmir, Turkey
[3] Izmir Biomed & Genome Ctr, TR-35340 Izmir, Turkey
[4] Dokuz Eylul Univ, Izmir Int Biomed & Genome Inst, Genome Sci & Mol Biotechnol, TR-35340 Izmir, Turkey
关键词
3D ternary plot; CRISPR; Cas9; gene delivery; PX458; solid lipid nanoparticle; transfection; TRANSFECTION EFFICIENCY; IN-VITRO; CLINICAL DEVELOPMENT; CELL TRANSFECTION; CATIONIC LIPIDS; RECENT PROGRESS; VIVO; VECTORS; STABILITY; VEHICLES;
D O I
10.2217/nnm-2020-0412
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Aim: The CRISPR/Cas9 system is a promising gene-editing tool for various anticancer therapies; however, development of a biocompatible, nonviral and efficient delivery of CRISPR/Cas9 expression systems remains a challenge. Materials & methods: Solid lipid nanoparticles (SLNs) were produced based on pseudo and 3D ternary plots. Obtained SLNs and their complexes with PX458 plasmid DNA were characterized and evaluated in terms of cytotoxicity and transfection efficiency. Results: SLNs were found to be nanosized, monodispersed, stable and nontoxic. Furthermore, they revealed similar transfection efficiency as the positive control. Conclusion: Overall, we have achieved a good SLN basis for CRISPR/Cas9 delivery and have the potential to produce SLNs with targeted anticancer properties by modifying production parameters and components to facilitate translating CRISPR/Cas9 into preclinical studies.
引用
收藏
页码:963 / 978
页数:16
相关论文
共 62 条
[11]   Lipid Nanoparticle Systems for Enabling Gene Therapies [J].
Cullis, Pieter R. ;
Hope, Michael J. .
MOLECULAR THERAPY, 2017, 25 (07) :1467-1475
[12]  
Dai Wei-Jing, 2016, Mol Ther Nucleic Acids, V5, pe349, DOI 10.1038/mtna.2016.58
[13]   Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems [J].
Danaei, M. ;
Dehghankhold, M. ;
Ataei, S. ;
Davarani, F. Hasanzadeh ;
Javanmard, R. ;
Dokhani, A. ;
Khorasani, S. ;
Mozafari, M. R. .
PHARMACEUTICS, 2018, 10 (02)
[14]   Recent Advances in Lipid Nanoparticle Formulations with Solid Matrix for Oral Drug Delivery [J].
Das, Surajit ;
Chaudhury, Anumita .
AAPS PHARMSCITECH, 2011, 12 (01) :62-76
[15]   Solid lipid nanoparticles as nucleic acid delivery system: Properties and molecular mechanisms [J].
De Jesus, Marcelo B. ;
Zuhorn, Inge S. .
JOURNAL OF CONTROLLED RELEASE, 2015, 201 :1-13
[16]   Gene based nanocarrier delivery for the treatment of hepatocellular carcinoma [J].
Deepak, Payal ;
Siddalingam, Rajinikanth ;
Kumar, Praveen ;
Anand, Sneha ;
Thakur, Sunita ;
Jagdish, Balasubramaniam ;
Jaiswal, Shweta .
JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2020, 59
[17]   Solid lipid nanoparticles:: Formulation factors affecting cell transfection capacity [J].
del Pozo-Rodriguez, A. ;
Delgado, D. ;
Solinis, M. A. ;
Gascon, A. R. ;
Pedraz, J. L. .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2007, 339 (1-2) :261-268
[18]   A proline-rich peptide improves cell transfection of solid lipid nanoparticle-based non-viral vectors [J].
del Pozo-Rodriguez, A. ;
Pujals, S. ;
Delgado, D. ;
Solinis, M. A. ;
Gascon, A. R. ;
Giralt, E. ;
Pedraz, J. L. .
JOURNAL OF CONTROLLED RELEASE, 2009, 133 (01) :52-59
[19]   Methotrexate loaded chitosan nanoparticles: Preparation, radiolabeling and in vitro evaluation for breast cancer diagnosis [J].
Ekinci, Meliha ;
Ilem-Ozdemir, Derya ;
Gundogdu, Evren ;
Asikoglu, Makbule .
JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2015, 30 :107-113
[20]   Radiation-Induced Targeted Nanoparticle-Based Gene Delivery for Brain Tumor Therapy [J].
Erel-Akbaba, Gulsah ;
Carvalho, Litia A. ;
Tian, Tian ;
Zinter, Max ;
Akbaba, Hasan ;
Obeid, Pierre J. ;
Chiocca, E. Antonio ;
Weissleder, Ralph ;
Kantarci, Ayse Gulten ;
Tannous, Bakhos A. .
ACS NANO, 2019, 13 (04) :4028-4040