Large area thermal light emission from autonomously formed suspended graphene arrays

被引:2
作者
Park, Mina [1 ,2 ]
Lee, Aram [1 ]
Rho, Ho Kyun [1 ]
Lee, Seoung-Ki [1 ]
Bae, Sukang [1 ]
Jeon, Dae-Young [1 ]
Lee, Dong Su [1 ]
Kim, Tae-Wook [1 ]
Im, Yeon-Ho [2 ]
Lee, Sang Hyun [1 ]
机构
[1] Korea Inst Sci & Technol, Inst Adv Composite Mat, 92 Chudong Ro, Wanju Gun 55324, Jeonbuk, South Korea
[2] Chonbuk Natl Univ, Dept Chem Engn, 567 Baekje Daero, Jeonju Si 54896, Jeonbuk, South Korea
关键词
CHEMICAL-VAPOR-DEPOSITION; SINGLE-LAYER GRAPHENE; MONOLAYER GRAPHENE; RAMAN-SPECTROSCOPY; INFRARED-EMISSION; FREQUENCY; TRANSPORT;
D O I
10.1016/j.carbon.2018.04.080
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Since its discovery, the existence of graphene, a 2D extract of graphite, has been in the spotlight in the field of optoelectrical physics. Suspended graphene is potentially an ideal structure for utilizing intrinsic properties of the graphene by reducing the hindrance due to interaction with substrate. Here, an autonomous fabrication of suspended graphene is proposed where it only requires a single transfer which yields multiple arrays of micron-scale suspended graphenes all at once. Large area graphene sheets transferred onto a substrate of array-patterned 3D-electrodes easily tear into pieces due to the strain gradients induced by the step heights of the electrode patterns, and each torn graphene piece takes its position between individual electroplated Cu-microgap electrode pairs. With the absence of long-range scattering from randomly charged impurities in the substrate and the correspondingly enhanced carrier mobility of suspended graphene, our novel structure is demonstrated for the application of a visible light-emitting device. It is observed that the electrically driven thermal emission spectra spans the blue side of the visible band, which corresponds to a temperature of above 3000 K. The facile access to mass production of suspended graphene can bridge the current 2D materials research to the wide field of electronics and optoelectronics. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:217 / 223
页数:7
相关论文
共 39 条
[1]   Photomechanical actuation in polymer-nanotube composites [J].
Ahir, SV ;
Terentjev, EM .
NATURE MATERIALS, 2005, 4 (06) :491-495
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[4]   First-principles analysis of electron-phonon interactions in graphene [J].
Borysenko, K. M. ;
Mullen, J. T. ;
Barry, E. A. ;
Paul, S. ;
Semenov, Y. G. ;
Zavada, J. M. ;
Nardelli, M. Buongiorno ;
Kim, K. W. .
PHYSICAL REVIEW B, 2010, 81 (12)
[5]  
Chen CY, 2013, NAT NANOTECHNOL, V8, P923, DOI [10.1038/NNANO.2013.232, 10.1038/nnano.2013.232]
[6]   Bright infrared emission from electrically induced excitons in carbon nanotubes [J].
Chen, J ;
Perebeinos, V ;
Freitag, M ;
Tsang, J ;
Fu, Q ;
Liu, J ;
Avouris, P .
SCIENCE, 2005, 310 (5751) :1171-1174
[7]   Suspended Graphene Sensors with Improved Signal and Reduced Noise [J].
Cheng, Zengguang ;
Li, Qiang ;
Li, Zhongjun ;
Zhou, Qiaoyu ;
Fang, Ying .
NANO LETTERS, 2010, 10 (05) :1864-1868
[8]   Approaching ballistic transport in suspended graphene [J].
Du, Xu ;
Skachko, Ivan ;
Barker, Anthony ;
Andrei, Eva Y. .
NATURE NANOTECHNOLOGY, 2008, 3 (08) :491-495
[9]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[10]   Determination of the true temperature of emitted radiation bodies from generalized Wien's displacement law [J].
Fisenko, AI ;
Ivashov, SN .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1999, 32 (22) :2882-2885