Evaluation of individual and ensemble probabilistic forecasts of COVID-19 mortality in the United States

被引:134
作者
Cramer, Estee Y. [1 ]
Ray, Evan L. [1 ]
Lopez, Velma K. [2 ]
Bracher, Johannes [3 ,4 ]
Brennen, Andrea [5 ]
Rivadeneira, Alvaro J. Castro [1 ]
Gerding, Aaron [1 ]
Gneiting, Tilmann [4 ,6 ]
House, Katie H. [1 ]
Huang, Yuxin [1 ]
Jayawardena, Dasuni [1 ]
Kanji, Abdul H. [1 ]
Khandelwal, Ayush [1 ]
Le, Khoa [1 ]
Muhlemann, Anja [7 ]
Niemi, Jarad [8 ]
Shah, Apurv [1 ]
Stark, Ariane [1 ]
Wang, Yijin [1 ]
Wattanachit, Nutcha [1 ]
Zorn, Martha W. [1 ]
Gu, Youyang
Jain, Sansiddh [9 ]
Bannur, Nayana [9 ]
Deva, Ayush [9 ]
Kulkarni, Mihir [9 ]
Merugu, Srujana [9 ]
Raval, Alpan [9 ]
Shingi, Siddhant [9 ]
Tiwari, Avtansh [9 ]
White, Jerome [9 ]
Abernethy, Neil F. [10 ]
Woody, Spencer [11 ]
Dahan, Maytal [12 ]
Fox, Spencer [11 ]
Gaither, Kelly [12 ]
Lachmann, Michael [13 ]
Meyers, Lauren Ancel [11 ]
Scott, James G. [14 ]
Tec, Mauricio [15 ]
Srivastava, Ajitesh [16 ]
George, Glover E. [17 ]
Cegan, Jeffrey C. [18 ]
Dettwiller, Ian D. [17 ]
England, William P. [17 ]
Farthing, Matthew W. [17 ]
Hunter, Robert H. [17 ]
Lafferty, Brandon [17 ]
Linkov, Igor [18 ]
Mayo, Michael L. [17 ]
机构
[1] Univ Massachusetts, Dept Biostat & Epidemiol, Amherst, MA 01003 USA
[2] Ctr Dis Control & Prevent, COVID 19 Response, Atlanta, GA 30333 USA
[3] Karlsruhe Inst Technol, Chair Econometr & Stat, D-76185 Karlsruhe, Germany
[4] Heidelberg Inst Theoret Studies, Computat Stat Grp, D-69118 Heidelberg, Germany
[5] In Q Tel, IQT Labs, Waltham, MA 02451 USA
[6] Karlsruhe Inst Technol, Inst Stochast, D-69118 Karlsruhe, Germany
[7] Univ Bern, Inst Math Stat & Actuarial Sci, CH-3012 Bern, Switzerland
[8] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[9] Wadhwani Inst Artificial Intelligence, Mumbai 400093, Maharashtra, India
[10] Univ Washington, Seattle, WA 98109 USA
[11] Univ Texas Austin, Dept Integrat Biol, Austin, TX 78712 USA
[12] Texas Adv Comp Ctr, Austin, TX 78758 USA
[13] Santa Fe Inst, Santa Fe, NM 87501 USA
[14] Univ Texas Austin, Dept Informat Risk & Operat Management, Austin, TX 78712 USA
[15] Univ Texas Austin, Dept Stat & Data Sci, Austin, TX 78712 USA
[16] Univ Southern Calif, Ming Hsieh Dept Comp & Elect Engn, Los Angeles, CA 90089 USA
[17] US Army Engineer Res & Dev Ctr, Vicksburg, MS 39180 USA
[18] US Army Engineer Res & Dev Ctr, Concord, MA 01742 USA
[19] US Army Engineer Res & Dev Ctr, Hanover, NH 03755 USA
[20] SUNY Upstate Med Univ, Dept Psychiat & Behav Sci, Syracuse, NY 13210 USA
[21] SUNY Upstate Med Univ, Sch Med, Syracuse, NY 13210 USA
[22] SUNY Upstate Med Univ, Dept Publ Hlth & Prevent Med, Syracuse, NY 13210 USA
[23] Syracuse Univ, Dept Elect Engn & Comp Sci, Syracuse, NY 13207 USA
[24] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
[25] Trinity Univ, Dept Phys, San Antonio, TX 78212 USA
[26] Univ Michigan, Dept Complex Syst, Ann Arbor, MI 48109 USA
[27] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
[28] Univ Michigan, Sch Publ Hlth, Dept Epidemiol, Ann Arbor, MI 48109 USA
[29] Univ Massachusetts, Coll Informat & Comp Sci, Amherst, MA 01003 USA
[30] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Amherst, MA 01003 USA
[31] Univ Calif San Diego, Dept Comp Sci & Engn, La Jolla, CA 92093 USA
[32] Northeastern Univ, Khoury Coll Comp Sci, Boston, MA 02115 USA
[33] Univ Washington, Dept Stat, Seattle, WA 98185 USA
[34] Univ Calif San Diego, Halicioglu Data Sci Inst, La Jolla, CA 92093 USA
[35] Univ Calif Santa Barbara, Dept Comp Sci, Santa Barbara, CA 93106 USA
[36] Univ Calif Merced, Dept Mech Engn, Embedded Syst & Automat Lab, Merced, CA 95301 USA
[37] Jilin Univ, Changchun 130012, Jilin, Peoples R China
[38] Univ Sci & Technol China, Hefei 230027, Anhui, Peoples R China
[39] Univ Calif Los Angeles, Dept Comp Sci, Los Angeles, CA 90095 USA
[40] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[41] Construx, Bellevue, WA 98004 USA
[42] Signat Sci LLC, Qual Assurance & Data Sci, Charlottesville, VA 22911 USA
[43] Signat Sci LLC, Qual Assurance & Data Sci, Austin, TX 78759 USA
[44] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12309 USA
[45] Univ Washington, Dept Civil & Environm Engn, Seattle, WA 98195 USA
[46] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
[47] Brown Univ, Sch Engn, Providence, RI 02912 USA
[48] Manhasset Secondary Sch, Manhasset, NY 11030 USA
[49] Predict Sci Inc, Infect Dis Grp, San Diego, CA 92121 USA
[50] Imperial Coll, Med Res Council Ctr Global Infect Dis Anal, Sch Publ Hlth, Dept Infect Dis Epidemiol, London W2 1PG, England
基金
美国国家科学基金会; 英国惠康基金; 比尔及梅琳达.盖茨基金会;
关键词
forecasting; COVID-19; ensemble forecast; model evaluation; WEATHER; PREDICTION;
D O I
10.1073/pnas.2113561119
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https:// covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multimodel ensemble forecast that combined predictions from dozens of groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naive baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-wk horizon three to five times larger than when predicting at a 1-wk horizon. This project underscores the role that collaboration and active coordination between governmental public-health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks.
引用
收藏
页数:12
相关论文
共 36 条
  • [1] COMBINATION OF FORECASTS
    BATES, JM
    GRANGER, CWJ
    [J]. OPERATIONAL RESEARCH QUARTERLY, 1969, 20 (04) : 451 - &
  • [2] A pre-registered short-term forecasting study of COVID-19 in Germany and Poland during the second wave
    Bracher, J.
    Wolffram, D.
    Deuschel, J.
    Gorgen, K.
    Ketterer, J. L.
    Ullrich, A.
    Abbott, S.
    Barbarossa, M., V
    Bertsimas, D.
    Bhatia, S.
    Bodych, M.
    Bosse, N., I
    Burgard, J. P.
    Castro, L.
    Fairchild, G.
    Fuhrmann, J.
    Funk, S.
    Gogolewski, K.
    Gu, Q.
    Heyder, S.
    Hotz, T.
    Kheifetz, Y.
    Kirsten, H.
    Krueger, T.
    Krymova, E.
    Li, M. L.
    Meinke, J. H.
    Michaud, I. J.
    Niedzielewski, K.
    Ozanski, T.
    Rakowski, F.
    Scholz, M.
    Soni, S.
    Srivastava, A.
    Zielinski, J.
    Zou, D.
    Gneiting, T.
    Schienle, M.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [3] Evaluating epidemic forecasts in an interval format
    Bracher, Johannes
    Ray, Evan L.
    Gneiting, Tilmann
    Reich, Nicholas G.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (02)
  • [4] Brooks L. C., 2020, COMP ENSEMBLE APPROA
  • [5] CDC, COVID 19 FOR MATH MO
  • [6] Cramer E, COVID 19 FORECAST HU
  • [7] Cramer EY, 2021, medRxiv, DOI [10.1101/2021.11.04.21265886, 10.1101/2021.11.04.21265886v1, DOI 10.1101/2021.11.04.21265886V1, 10.1101/2021.11.04.21265886, DOI 10.1101/2021.11.04.21265886]
  • [8] Davies S. E, 2016, The politics of surveillance and response to disease outbreaks
  • [9] Delclos P.J., 2021, bioRxiv, DOI DOI 10.1101/2021.06.22
  • [10] Department of Health, NM IBIS MMWR WEEK DE