Mechanisms and Dynamics of Protein Acetylation in Mitochondria

被引:235
|
作者
Baeza, Josue [1 ,2 ]
Smallegan, Michael J. [2 ]
Denu, John M. [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Biomol Chem, Madison, WI 53715 USA
[2] Univ Wisconsin, Wisconsin Inst Discovery, Madison, WI 53715 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
BOVINE GLUTAMATE-DEHYDROGENASE; FATTY-ACID OXIDATION; LYSINE ACETYLATION; SIRT3; DEACETYLATES; HISTONE ACETYLTRANSFERASE; DEPENDENT REGULATION; CALORIE RESTRICTION; COA SYNTHETASE; HEXOKINASE II; CYCLOPHILIN D;
D O I
10.1016/j.tibs.2015.12.006
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reversible protein acetylation is a major regulatory mechanism for controlling protein function. Through genetic manipulations, dietary perturbations, and new proteomic technologies, the diverse functions of protein acetylation are coming into focus. Protein acetylation in mitochondria has taken center stage, revealing that 63% of mitochondrially localized proteins contain lysine acetylation sites. We summarize the field and discuss salient topics that cover spurious versus targeted acetylation, the role of SIRT3 deacetylation, nonenzymatic acetylation, and molecular models for regulatory acetylations that display high and low stoichiometry.
引用
收藏
页码:231 / 244
页数:14
相关论文
共 50 条
  • [31] Lysine acetylation in mitochondria: From inventory to function
    Hosp, Fabian
    Lassowskat, Ines
    Santoro, Valeria
    De Vleesschauwer, David
    Fliegner, Daniela
    Redestig, Henning
    Mann, Matthias
    Christian, Sven
    Hannah, Matthew A.
    Finkemeier, Iris
    MITOCHONDRION, 2017, 33 : 58 - 71
  • [32] Mitochondria govern histone acetylation in colorectal cancer
    Ohshima, Kenji
    Oi, Ryo
    Nojima, Satoshi
    Morii, Eiichi
    JOURNAL OF PATHOLOGY, 2022, 256 (02): : 164 - 173
  • [33] Evidence of undiscovered cell regulatory mechanisms: phosphoproteins and protein kinases in mitochondria
    M. Thomson
    Cellular and Molecular Life Sciences CMLS, 2002, 59 : 213 - 219
  • [34] N-terminal acetylation of α-synuclein: influence on conformation, dynamics and protein aggregation
    Baum, Jean
    PROTEIN SCIENCE, 2012, 21 : 61 - 61
  • [35] Protein Translocation into the Intermembrane Space and Matrix of Mitochondria: Mechanisms and Driving Forces
    Backes, Sandra
    Herrmann, Johannes M.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2017, 4
  • [36] Mildronate and its Neuroregulatory Mechanisms: Targeting the Mitochondria, Neuroinflammation, and Protein Expression
    Klusa, Vija
    Beitnere, Ulrika
    Pupure, Jolanta
    Isajevs, Sergejs
    Rumaks, Juris
    Svirskis, Simons
    Dzirkale, Zane
    Kalvinsh, Ivars
    MEDICINA-LITHUANIA, 2013, 49 (07): : 301 - 309
  • [37] Evidence of undiscovered cell regulatory mechanisms: phosphoproteins and protein kinases in mitochondria
    Thomson, M
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2002, 59 (02) : 213 - 219
  • [38] Mechanisms and dynamics of protein clustering on a solid surface
    Mulheran, Paul
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [39] Mechanisms and dynamics of protein clustering on a solid surface
    Mulheran, P. A.
    Pellenc, D.
    Bennett, R. A.
    Green, R. J.
    Sperrin, M.
    PHYSICAL REVIEW LETTERS, 2008, 100 (06)
  • [40] Reading protein acetylation
    Kirsty Minton
    Nature Reviews Molecular Cell Biology, 2016, 17 : 676 - 677