A Review on Design Strategies for Carbon Based Metal Oxides and Sulfides Nanocomposites for High Performance Li and Na Ion Battery Anodes

被引:447
作者
Zhao, Yi [1 ]
Wang, Luyuan Paul [1 ,2 ]
Sougrati, Moulay Tahar [3 ]
Feng, Zhenxing [4 ]
Leconte, Yann [5 ]
Fisher, Adrian [6 ]
Srinivasan, Madhavi [1 ,2 ]
Xu, Zhichuan [1 ,2 ,7 ]
机构
[1] Nanyang Technol Univ, Sch Mat Sci & Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Interdisciplinary Grad Sch, ERI N, 50 Nanyang Ave, Singapore 639798, Singapore
[3] Univ Montpellier 2, Inst Charles Gerhardt Montpellier, UMR CNRS 5253, ALISTORE European Res Inst CNRS 3104, F-34095 Montpellier, France
[4] Oregon State Univ, Sch Chem Biol & Environm Engn, Corvallis, OR 97331 USA
[5] CEA, IRAMIS, UMR NIMBE 3685, F-91191 Gif Sur Yvette, France
[6] Univ Cambridge, Dept Chem Engn, Cambridge CB2 3RA, England
[7] Nanyang Technol Univ, Solar Fuels Lab, 50 Nanyang Ave, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
REDUCED GRAPHENE OXIDE; ONE-POT SYNTHESIS; NITROGEN-DOPED GRAPHENE; SUPERIOR LITHIUM STORAGE; ENHANCED ELECTROCHEMICAL PERFORMANCE; TRANSMISSION ELECTRON-MICROSCOPY; ORDERED MESOPOROUS CARBON; IN-SITU OBSERVATION; BINDER-FREE ANODES; COATED SNO2/GRAPHENE NANOSHEETS;
D O I
10.1002/aenm.201601424
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon-oxide and carbon-sulfide nanocomposites have attracted tremendous interest as the anode materials for Li and Na ion batteries. Such composites are fascinating as they often show synergistic effect compared to their singular components. Carbon nanomaterials are often used as the matrix due to their high conductivity, tensile strength, and chemical stability under the battery condition. Metal oxides and sulfides are often used as active material fillers because of their large capacity. Numerous works have shown that by taking one step further into fabricating nanocomposites with rational structure design, much better performance can be achieved. The present review aims to present and discuss the development of carbon-based nanocomposite anodes in both Li ion batteries and Na ion batteries. The authors introduce the individual components in the composites, i.e., carbon matrices (e.g., carbon nanotube, graphene) and metal oxides/sulfides; followed by evaluating how advanced nanostructures benefit from the synergistic effect when put together. Particular attention is placed on strategies employed in fabricating such composites, with examples such as yolk-shell structure, layered-by-layered structure, and composite comprising one or more carbon matrices. Lastly, the authors conclude by highlighting challenges that still persist and their perspective on how to further develop the technologies.
引用
收藏
页数:70
相关论文
共 772 条
[91]   Glucose-Assisted Growth of MoS2 Nanosheets on CNT Backbone for Improved Lithium Storage Properties [J].
Ding, Shujiang ;
Chen, Jun Song ;
Lou, Xiong Wen .
CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (47) :13142-13145
[92]   One-Dimensional Hierarchical Structures Composed of Novel Metal Oxide Nanosheets on a Carbon Nanotube Backbone and Their Lithium-Storage Properties [J].
Ding, Shujiang ;
Chen, Jun Song ;
Lou, Xiong Wen .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (21) :4120-4125
[93]   CNTs@SnO2@Carbon Coaxial Nanocables with High Mass Fraction of SnO2 for Improved Lithium Storage [J].
Ding, Shujiang ;
Chen, Jun Song ;
Lou, Xiong Wen .
CHEMISTRY-AN ASIAN JOURNAL, 2011, 6 (09) :2278-2281
[94]   SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties [J].
Ding, Shujiang ;
Luan, Deyan ;
Boey, Freddy Yin Chiang ;
Chen, Jun Song ;
Lou, Xiong Wen .
CHEMICAL COMMUNICATIONS, 2011, 47 (25) :7155-7157
[95]   Graphene-supported anatase TiO2 nanosheets for fast lithium storage [J].
Ding, Shujiang ;
Chen, Jun Song ;
Luan, Deyan ;
Boey, Freddy Yin Chiang ;
Madhavi, Srinivasan ;
Lou, Xiong Wen .
CHEMICAL COMMUNICATIONS, 2011, 47 (20) :5780-5782
[96]   Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: a combined experimental and theoretical study [J].
Ding, Zijing ;
Zhao, Liang ;
Suo, Liumin ;
Jiao, Yang ;
Meng, Sheng ;
Hu, Yong-Sheng ;
Wang, Zhaoxiang ;
Chen, Liquan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (33) :15127-15133
[97]   Carbon-Confined Sno2-Electrodeposited Porous Carbon Nanofiber Composite as High-Capacity Sodium-Ion Battery Anode Material [J].
Dirican, Mahmut ;
Lu, Yao ;
Ge, Yeqian ;
Yildiz, Ozkan ;
Zhang, Xiangwu .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (33) :18387-18396
[98]   Carbon-enhanced electrodeposited SnO2/carbon nanofiber composites as anode for lithium-ion batteries [J].
Dirican, Mahmut ;
Yanilmaz, Meltem ;
Fu, Kun ;
Lu, Yao ;
Kizil, Huseyin ;
Zhang, Xiangwu .
JOURNAL OF POWER SOURCES, 2014, 264 :240-247
[99]   Synthesis of CNT@Fe3O4-C hybrid nanocables as anode materials with enhanced electrochemical performance for lithium ion batteries [J].
Dong, Yucheng ;
Md, Kamruzzaman ;
Chui, Ying-San ;
Xia, Yang ;
Cao, Chenwei ;
Lee, Jong-Min ;
Zapien, Juan Antonio .
ELECTROCHIMICA ACTA, 2015, 176 :1332-1337
[100]   Green and facile synthesis of Fe3O4 and graphene nanocomposites with enhanced rate capability and cycling stability for lithium ion batteries [J].
Dong, Yucheng ;
Zhang, Zhenyu ;
Xia, Yang ;
Chui, Ying-San ;
Lee, Jong-Min ;
Zapien, Juan Antonio .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (31) :16206-16212