Circular dichroism from single plasmonic nanostructures with extrinsic chirality

被引:95
|
作者
Lu, Xuxing [1 ,2 ]
Wu, Jian [1 ,2 ,3 ]
Zhu, Qiannan [1 ,2 ]
Zhao, Junwei [1 ,2 ]
Wang, Qiangbin [1 ,2 ]
Zhan, Li
Ni, Weihai [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Div I Lab, Key Lab Nanobio Interface, Suzhou 215123, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Collaborat Innovat Ctr Suzhou Nano Sci & Technol, Suzhou 215123, Jiangsu, Peoples R China
[3] Shanghai Jiao Tong Univ, State Key Lab Adv Opt Commun Syst & Networks, Minist Educ, Dept Phys & Astron,Key Lab Laser Plasmas, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
DISCRETE-DIPOLE APPROXIMATION; GOLD NANORODS; OPTICAL-PROPERTIES; ABSORPTION; SCATTERING; REFRACTION; NANOPARTICLES; OLIGOMERS; DIMERS;
D O I
10.1039/c4nr04433a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Circular dichroism (CD) studies on single nanostructures can yield novel insights into chiroptical physics that are not available from traditional ensemble-based measurements, yet they are challenging because of their weak signals. By introducing an oblique excitation beam, we demonstrate the observation and spectroscopic analysis of a prominent plasmonic chiroptical response from a single v-shaped gold nanorod dimer nanostructure. We show that circular differential scattering from the obliquely excited gold nanorod dimer yields a characteristic bisignate peak-dip spectral shape at hybridized energies of the dimer. This chiroptical response can be ascribed to extrinsic chirality which depends on the geometry configurations of the chiral arrangement. Due to strong near-field coupling, the dipole orientations of the hybridized resonance modes can be in favor of the incident circularly polarized light where a maximum g-factor of similar to 0.4 is observed. Promising applications of this chiroptical arrangement as a key component can be in electronics, photonics, or metamaterials.
引用
收藏
页码:14244 / 14253
页数:10
相关论文
共 50 条
  • [31] Exciton chirality method in vibrational circular dichroism
    Taniguchi, Tohru
    Monde, Kenji
    Journal of the American Chemical Society, 2012, 134 (08): : 3695 - 3698
  • [32] Exciton chirality method in vibrational circular dichroism
    Monde, Kenji
    Kobunshi, 2012, 61 (10) : 779 - 780
  • [33] Chirality of aromatic bis-imides from their circular dichroism spectra
    Gawronski, J
    Brzostowska, M
    Kacprzak, K
    Kolbon, H
    Skowronek, P
    CHIRALITY, 2000, 12 (04) : 263 - 268
  • [34] EXTRINSIC CIRCULAR DICHROISM RESULTING FROM INTERACTION OF SULPHONAMIDES WITH PLASMA ALBUMIN
    WOOD, GC
    STEWART, S
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 1971, 23 : S248 - &
  • [35] Engineering chiral plasmonic nanostructures for gain-assisted plasmon amplification and tunable enhancement of circular dichroism
    Yadav, Vikas
    Siddhanta, Soumik
    MATERIALS ADVANCES, 2022, 3 (03): : 1825 - 1833
  • [36] Optical Chirality from Dark-Field Illumination of Planar Plasmonic Nanostructures
    Hwang, Yongsop
    Hopkins, Ben
    Wang, Dapeng
    Mitchell, Arnan
    Davis, Timothy J.
    Lin, Jiao
    Yuan, Xiao-Cong
    LASER & PHOTONICS REVIEWS, 2017, 11 (06)
  • [37] Broadband circular dichroism in chiral plasmonic woodpiles
    Bilel Abdennadher
    René Iseli
    Ullrich Steiner
    Matthias Saba
    Applied Physics A, 2023, 129
  • [38] Chiral Nanocrystals: Plasmonic Spectra and Circular Dichroism
    Fan, Zhiyuan
    Govorov, Alexander O.
    NANO LETTERS, 2012, 12 (06) : 3283 - 3289
  • [39] Circular dichroism enhancement in plasmonic nanorod metamaterials
    Vestler, D.
    Shishkin, I.
    Gurvitz, E. A.
    Nasir, M. E.
    Ben-Moshe, A.
    Slobozhanyuk, A. P.
    Krasavin, A. V.
    Levi-Belenkova, T.
    Shalin, A. S.
    Ginzburg, P.
    Markovich, G.
    Zayats, A. V.
    OPTICS EXPRESS, 2018, 26 (14): : 17841 - 17848
  • [40] Circular dichroism in planar nonchiral plasmonic metamaterials
    Yannopapas, Vassilios
    OPTICS LETTERS, 2009, 34 (05) : 632 - 634