Improving high-temperature mechanical properties of cast CrFeCoNi high-entropy alloy by highly thermostable in-situ precipitated carbides

被引:31
作者
Liu, X. W. [1 ]
Gao, N. [1 ]
Zheng, J. [2 ]
Wu, Y. [3 ]
Zhao, Y. Y. [4 ]
Chen, Q. [5 ]
Zhou, W. [2 ]
Pu, S. Z. [6 ]
Jiang, W. M. [1 ]
Fan, Z. T. [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & & Mould Technol, Wuhan 430074, Peoples R China
[2] China Acad Engn Phys, Inst Nucl Phys & Chem, Mianyang 621999, Sichuan, Peoples R China
[3] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
[4] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
[5] Southwest Technol & Engn Res Inst, Chongqing 400039, Peoples R China
[6] Wuhan Univ, Ctr Electron Microscopy, Wuhan 430072, Peoples R China
来源
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY | 2021年 / 72卷
关键词
High-entropy alloy; Carbides; Precipitation; High-temperature property; Strengthening; AUSTENITIC STAINLESS-STEEL; GRAIN-BOUNDARY; TENSILE PROPERTIES; THERMAL-STABILITY; SOLID SOLUBILITY; CREEP RESISTANCE; PLASTIC-FLOW; PHASE; EVOLUTION; STRENGTH;
D O I
10.1016/j.jmst.2020.07.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The CrFeCoNi high-entropy alloy (HEA) exhibits excellent mechanical properties at lower temperatures due to its low stacking-fault energy, however, its medium- and high-temperature strengths are still insufficient. In consideration of the potential diversified applications, more strengthening approaches except for the previously proposed L1(2) phase hardening deserve further exploration due to its rapid coarsening tendency at high temperatures. Here, we achieved significant high-temperature strengthening of the cast CrFeCoNi HEA by in-situ precipitation of highly thermostable carbides. Alloys with 0.5 at.% and 1 at.% niobium and carbon were prepared by simple casting processes, i.e. drop cast, solute solution and aging. A highly thermostable microstructure was formed, which comprises very coarse grains accompanied with extensive thermostable carbide precipitates embedded, including submicrometer coherent NbC particles in grain interiors and intergranular coherent M23C6 carbides. This high thermostability of microstructure, which is beneficial for the high-temperature loading, is ascribed to the synergy of lacking growth driving force and Zenner pinning effect by the carbides. Tensile properties tested at 673, 873 and 1073 K show that the yield strength and ultimate tensile strength are significantly increased by Nb/C doping, along with the elongation escalation at higher temperatures. The strengthening is mainly due to the precipitation hardening of carbide particles. (C) 2021 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:29 / 38
页数:10
相关论文
共 50 条
  • [31] High-Temperature Mechanical Properties of NbTaHfTiZrV0.5 Refractory High-Entropy Alloys
    Liu, Zhangquan
    Shi, Xiaohui
    Zhang, Min
    Qiao, Junwei
    ENTROPY, 2023, 25 (08)
  • [32] Microstructure and Mechanical Properties of a Refractory CoCrMoNbTi High-Entropy Alloy
    Zhang, Mina
    Zhou, Xianglin
    Li, Jinghao
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2017, 26 (08) : 3657 - 3665
  • [33] Microstructures and mechanical properties of a welded CoCrFeMnNi high-entropy alloy
    Wu, Z.
    David, S. A.
    Leonard, D. N.
    Feng, Z.
    Bei, H.
    SCIENCE AND TECHNOLOGY OF WELDING AND JOINING, 2018, 23 (07) : 585 - 595
  • [34] Microstructure and mechanical properties of a low activation cast WTaHfTiZr refractory high-entropy alloy
    Ma, Xian-neng
    Hu, Yi-fei
    Wang, Kai
    Zhang, Hai-long
    Fan, Zi-tian
    Suo, Jin-ping
    Liu, Xin-wang
    CHINA FOUNDRY, 2022, 19 (06) : 489 - 494
  • [35] Development, characterization, and mechanical properties of innovative in-situ high-entropy alloy reinforced magnesium matrix composites via ultrasonic-assisted processing
    Rajoria, Sonika R.
    Kanti, Smarajit Punya
    Soni, Harsh
    Sahoo, B. N.
    JOURNAL OF MANUFACTURING PROCESSES, 2025, 142 : 368 - 386
  • [36] Improving mechanical properties of an additively manufactured high-entropy alloy via post thermomechanical treatment
    Zhao, X. J.
    Deng, S.
    Li, J. F.
    Li, C.
    Lei, Y. Z.
    Luo, S. N.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 984
  • [37] Improving mechanical properties of an FCC high-entropy alloy by γ′ and B2 precipitates strengthening
    Li, Ziyong
    Fu, Liming
    Peng, Jian
    Zheng, Han
    Ji, Xinbo
    Sun, Yanle
    Ma, Shuo
    Shan, Aidang
    MATERIALS CHARACTERIZATION, 2020, 159 (159)
  • [38] Microstructure, mechanical properties and high-temperature sliding wear response of a new Al0.5CrFeNiV0.5 high-entropy alloy
    Wu, Xiaotian
    Su, Lihong
    Tieu, Anh Kiet
    Cheng, Jun
    Nguyen, Cuong
    Zhu, Hongtao
    Yang, Jun
    Deng, Guanyu
    WEAR, 2025, 562
  • [39] Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy
    Gludovatz, Bernd
    George, Easo P.
    Ritchie, Robert O.
    JOM, 2015, 67 (10) : 2262 - 2270
  • [40] A hypoeutectic high-entropy alloy with hierarchical microstructure for high-temperature application
    Liu, Linxiang
    Wang, Zhijun
    Wu, Qingfeng
    Jia, Yuhao
    Xu, Q.
    He, Feng
    Li, Junjie
    Wang, Jincheng
    SCRIPTA MATERIALIA, 2023, 232