Collision detection algorithm for MIRADAS

被引:0
作者
Roma, David [1 ,2 ,3 ]
Bosch, Jose [1 ,2 ,4 ]
Sabater, Josep [2 ]
Gomez, Jose M. [1 ,2 ,4 ]
机构
[1] Univ Barcelona, Dept Elect & Biomed Engn, Barcelona, Spain
[2] Inst Space Studies Catalonia, Barcelona, Spain
[3] Inst Ciencies Espai, Campus UAB, Bellaterra, Spain
[4] Univ Barcelona, Inst Cosmos Sci, Barcelona, Spain
关键词
collision detection; polygon; intersection; sweep line; multiple object; spectrograph;
D O I
10.1117/1.JATIS.7.1.015003
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Mid-resolution Infrared Astronomical Spectrograph (MIRADAS) is a near-infrared multi-object echelle spectrograph for Gran Telescopio de Canarias. It selects targets from a 5-arc min field of view using up to 12 deployable probe arms with pick-off mirror optics. The focal plane where the probe arms move has a diameter around 250 mm. The specific geometry of the probe arms requires an optimized collision detection algorithm for the determination of the target assignment and the trajectories determination. We present the general polygonal chain intersection algorithm, which is used to detect the possible collisions and avoid them. It is a generalization of the Polygonal Chain Intersection algortihm, allowing to work with vertical segments, providing a solution for the intersection of any class of polygons. Its use has reduced the time required to detect the collisions between 3 and 4 times compared with a naive solution when used in MIRADAS. (C) 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:20
相关论文
共 14 条
[1]   Detecting the intersection of convex objects in the plane [J].
Dobkin, David P. ;
Souvaine, Diane L. .
Computer Aided Geometric Design, 1991, 8 (03) :181-199
[2]  
El-midany T T., 2002, International Journal of CAD/CAM, kot, V2, sz, P23
[3]  
Foster E. L., 2019, COMPUT GRAPH X, V2, P100007, DOI DOI 10.1016/J.CAGX.2019.100007
[4]  
IEEE Computer Society, 2019, IEEE standard for floating-point arithmetic, DOI [10.1109/IEEESTD.2019.8859679, DOI 10.1109/IEEESTD.2008.4610935, 10.1109/IEEESTD.2019.8766229, DOI 10.1109/IEEESTD.2019.8766229, 10.1109/IEEESTD.2017.8091139]
[5]  
Jou E. D., 1991, Modeling in Computer Graphics. Proceedings of the IFIP WG 5.10 Working Conference, P265
[6]   A NEW LINEAR ALGORITHM FOR INTERSECTING CONVEX POLYGONS [J].
OROURKE, J ;
CHIEN, CB ;
OLSON, T ;
NADDOR, D .
COMPUTER GRAPHICS AND IMAGE PROCESSING, 1982, 19 (04) :384-391
[7]  
Park S. C., 2001, SWEEP LINE ALGORITHM, P309
[8]   Polygonal chain intersection [J].
Park, SC ;
Shin, H .
COMPUTERS & GRAPHICS-UK, 2002, 26 (02) :341-350
[9]  
Preparata F. P., 2012, COMPUTATIONAL GEOMET
[10]   TESTING A SIMPLE POLYGON FOR MONOTONICITY [J].
PREPARATA, FP ;
SUPOWIT, KJ .
INFORMATION PROCESSING LETTERS, 1981, 12 (04) :161-164