Critical Hardy-Sobolev inequalities

被引:67
作者
Filippas, S. [1 ]
Maz'ya, V.
Terfikas, A.
机构
[1] Univ Crete, Dept Appl Math, Iraklion 71409, Greece
[2] FORTH, Inst Appl & Computat Math, Iraklion 71110, Greece
[3] Univ Liverpool, Dept Math Sci, Liverpool L69 72L, Merseyside, England
[4] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
[5] Univ Crete, Dept Math, Iraklion 71409, Greece
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2007年 / 87卷 / 01期
关键词
Hardy inequality; Sobolev inequality; distance function; critical exponent; convexity; isoperimetric inequality;
D O I
10.1016/j.matpur.2006.10.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Hardy inequalities in R-n, n >= 3, with best constant that involve either distance to the boundary or distance to a surface of co-dimension k < n, and we show that they can still be improved by adding a multiple of a whole range of critical norms that at the extreme case become precisely the critical Sobolev norm. (C) 2006 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:37 / 56
页数:20
相关论文
共 22 条
[1]   An improved Hardy-Sobolev inequality in W1,p and its application to Schrodinger operators [J].
Adimurthi ;
Esteban, MJ .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2005, 12 (02) :243-263
[2]  
Ambrosio L, 1996, J DIFFER GEOM, V43, P693
[3]  
Azorero JPG, 1998, J DIFFER EQUATIONS, V144, P441
[4]   A unified approach to improved Lp hardy inequalities with best constants [J].
Barbatis, G ;
Filippas, S ;
Tertikas, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (06) :2169-2196
[5]   Best constants in Sobolev trace inequalities [J].
Biezuner, RJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (03) :575-589
[6]  
Brezis H., 1997, Rev. Mat. Univ. Complut. Madrid, V10, P443
[7]  
Brezis H., 1997, ANN SC NORM PISA, V25, P217
[8]   Existence versus instantaneous blow-up for linear heat equations with singular potentials [J].
Cabré, X ;
Martel, Y .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (11) :973-978
[9]  
Davila J, 2004, J EUR MATH SOC, V6, P335
[10]   An analytical proof of Hardy-like inequalities related to the Dirac operator [J].
Dolbeault, J ;
Esteban, MJ ;
Loss, M ;
Vega, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 216 (01) :1-21