A statistical analysis of COVID-19 using Gaussian and probabilistic model

被引:15
作者
Nayak, Soumya Ranjan [1 ]
Arora, Vaibhav [1 ]
Sinha, Utkarsh [1 ]
Poonia, Ramesh Chandra [2 ]
机构
[1] Amity Univ Noida, Amity Sch Engn & Technol, Noida 201301, Uttar Pradesh, India
[2] Amity Univ Jaipur, Amity Inst Informat Technol, Jaipur 303007, Rajasthan, India
关键词
COVID-19; Statistical analysis; Gaussian model; Epidemic control; Predictive analysis; ANOVA;
D O I
10.1080/09720502.2020.1833442
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
SARS Cov-2, COVID-19 (Coronavirus) emerged in Wuhan in early December 2019 and then spread exponentially across the globe. Although, a series of prevention strategies (lockdown, social-distancing) have been enforced to control this pandemic. In this study, we have made statistical analysis in terms of Gaussian modeling, ANOVA test and probabilistic model. After applying ANOVA we can conclude that the recovery rate for all the countries are significantly higher than the mortality rate except for the UK where the mortality rate is significantly higher than the recovery rate. Gaussian modeling applied here was able to predict the original peak values of confirmed cases of countries. Using the probabilistic model we were able to predict that there is around 5% probability that a person in India will be tested positive for COVID-19 on 100 tests.
引用
收藏
页码:19 / 32
页数:14
相关论文
共 10 条
[1]   Descriptive analysis of COVID-19 patients in the context of India [J].
Bhatnagar, Vaibhav ;
Poonia, Ramesh Chandra ;
Nagar, Pankaj ;
Kumar, Sandeep ;
Singh, Vijander ;
Raja, Linesh ;
Dass, Pranav .
JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2021, 24 (03) :489-504
[2]   Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR (Publication with Expression of Concern) [J].
Corman, Victor M. ;
Landt, Olfert ;
Kaiser, Marco ;
Molenkamp, Richard ;
Meijer, Adam ;
Chu, Daniel K. W. ;
Bleicker, Tobias ;
Bruenink, Sebastian ;
Schneider, Julia ;
Schmidt, Marie Luisa ;
Mulders, Daphne G. J. C. ;
Haagmans, Bart L. ;
van der Veer, Bas ;
van den Brink, Sharon ;
Wijsman, Lisa ;
Goderski, Gabriel ;
Romette, Jean-Louis ;
Ellis, Joanna ;
Zambon, Maria ;
Peiris, Malik ;
Goossens, Herman ;
Reusken, Chantal ;
Koopmans, Marion P. G. ;
Drosten, Christian .
EUROSURVEILLANCE, 2020, 25 (03) :23-30
[3]   The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China [J].
Hui, David S. ;
Azhar, Esam I. ;
Madani, Tariq A. ;
Ntoumi, Francine ;
Kock, Richard ;
Dar, Osman ;
Ippolito, Giuseppe ;
Mchugh, Timothy D. ;
Memish, Ziad A. ;
Drosten, Christian ;
Zumla, Alimuddin ;
Petersen, Eskild .
INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2020, 91 :264-266
[4]   Propagation analysis and prediction of the COVID-19 [J].
Li, Lixiang ;
Yang, Zihang ;
Dang, Zhongkai ;
Meng, Cui ;
Huang, Jingze ;
Meng, Haotian ;
Wang, Deyu ;
Chen, Guanhua ;
Zhang, Jiaxuan ;
Peng, Haipeng ;
Shao, Yiming .
INFECTIOUS DISEASE MODELLING, 2020, 5 :282-292
[5]   A modified triangle box-counting with precision in error fit [J].
Nayak, Soumya Ranjan ;
Mishra, Jibitesh .
JOURNAL OF INFORMATION & OPTIMIZATION SCIENCES, 2018, 39 (01) :113-128
[6]   Can mathematical modelling solve the current Covid-19 crisis? [J].
Panovska-Griffiths, Jasmina .
BMC PUBLIC HEALTH, 2020, 20 (01)
[7]   Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany [J].
Rothe, Camilla ;
Schunk, Mirjam ;
Sothmann, Peter ;
Bretzel, Gisela ;
Froeschl, Guenter ;
Wallrauch, Claudia ;
Zimmer, Thorbjoern ;
Thiel, Verena ;
Janke, Christian ;
Guggemos, Wolfgang ;
Seilmaier, Michael ;
Drosten, Christian ;
Vollmar, Patrick ;
Zwirglmaier, Katrin ;
Zange, Sabine ;
Woelfel, Roman ;
Hoelscher, Michael .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (10) :970-971
[8]   Fuzzy rule based intelligent system for user authentication based on user behaviour [J].
Roy, Arpita ;
Razia, Shaik ;
Parveen, Nikhat ;
Rao, Arumbaka Srinivasa ;
Nayak, Soumya Ranjan ;
Poonia, Ramesh Chandra .
JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (02) :409-417
[9]   Prediction of COVID-19 corona virus pandemic based on time series data using support vector machine [J].
Singh, Vijander ;
Poonia, Ramesh Chandra ;
Kumar, Sandeep ;
Dass, Pranav ;
Agarwal, Pankaj ;
Bhatnagar, Vaibhav ;
Raja, Linesh .
JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2020, 23 (08) :1583-1597
[10]   Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak [J].
Zhao, Shi ;
Lin, Qianyin ;
Ran, Jinjun ;
Musa, Salihu S. ;
Yang, Guangpu ;
Wang, Weiming ;
Lou, Yijun ;
Gao, Daozhou ;
Yang, Lin ;
He, Daihai ;
Wang, Maggie H. .
INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2020, 92 :214-217